IJPSR (2021), Volume 12, Issue 5

INTERNATIONAL JOURNAL

(Review Article)

Received on 25 April 2020; received in revised form, 10 November 2020; accepted, 12 April 2021; published 01 May 2021

REVIEW: AVAILABLE ANALYTICAL METHODS FOR THE ESTIMATION OF FIRST LINE, SECOND LINE ORAL AND NEWER ANTI-TB DRUGS

Riddhi J. Jani^{*} and Paresh U. Patel

Department of Quality Assurance, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana-Gozaria Highway, Ganpat Vidyanagar, Mehsana - 384012, Gujarat, India.

Keywords:

Bedaquiline, Delamanid, Pretomanid, RP-HPLC, HPTLC, LC-MS

Correspondence to Author: Riddhi J. Jani

Department of Quality Assurance, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana-Gozaria Highway, Ganpat Vidyanagar, Mehsana - 384012, Gujarat, India.

E-mail: janiriddhi52@gmail.com

ABSTRACT: Tuberculosis (TB) is one of the top ten causes of death worldwide. Presently, one-quarter of the world's population is thought to be infected with TB. New infections occur in about 1% of the population each year. Tuberculosis is a major global health threat. There is a progressive increase in multidrug-resistant (MDR) and extensively drug-resistant tuberculosis (XDR). Multi drug resistance (MDR)-TB and Extensively drug resistance (XDR)-TB poses a vital challenge to the control of tuberculosis. Numbers of drugs are available in the market for the treatments of tuberculosis as well as many new drugs are also available for the treatment of MDR-TB and XDR-TB. This review article covers most of the different official and reported analytical methods for the estimation of the first line, second line oral, and newer anti-TB drugs. The main objective of this review is to classify, summarize, and discusses the different proposed analytical methods for the estimation of above mentioned anti-TB drugs alone and in combination with other drugs in bulk, pharmaceutical formulation and biological matrices.

INTRODUCTION: Tuberculosis (TB) is the most important airborne infectious disease caused by a bacterium called Mycobacterium tuberculosis (MTB). The one third of the world population is the infected by mycobacterium tuberculosis according the World Health Organisation (WHO) to estimation. HIV infected persons, immigrants from countries with high rates of tuberculosis, the homeless, healthcare professionals, intravenous drug users, a person taking immunosuppressive agents and those in an institutional setting such as nursing homes and correctional facilities group at high risk for tuberculosis infection there is a progressive increase in multidrug-resistant (MDR) and extensively drug-resistant tuberculosis (XDR).

Anti-Tb drugs are classified as:

(i) Oral first-line drugs and extended first-line drugs (Isoniazid, Rifampicin, Ethambutol, Pyrazinamide, Rifabutin, Rifapentine), (ii) Injectable anti-TB drugs (Streptomycin, Kanamycin, Amikacin, Capreomycin, Viomycin) (iii) Fluoroquinolones (Ciprofloxacin, Ofloxacin, Levofloxacin, Moxifloxacin, Gatifloxacin) (iv) Oral second-line anti-TB drugs (Ethionamide/Prothionamide, Cycloserine, Terizi-done, Para-aminosalicylic acid) (v) Anti-TB drugs with limited data on efficacy and long-term safety in the treatment of drug-resistant TB (This group includes new anti-TB agents) (Bedaquiline, Delamanid, Pretomanid, Linezolid, Clofazimine, Amoxicillin / clavulanate, Imipenem / cilastatin, Meropenem, High-dose Isoniazid, Thioacetazone, Clarithromycin).

The increasing interest in the oral first line and the oral second line as well as new anti-TB drugs like bedaquiline, delamanid, and pretomanid led us to review the official and reported analytical methods for the estimation of these anti-TB drugs alone and in combination with other drugs in bulk, pharmaceutical formulation and biological matrices.

TABLE 1: DRUG PROFILE OF	ANTI-TB DI	RUGS (ORAL	FIRST LINE,	ORAL	SECOND	LINE A	ND NEWER
ANTI-TB DRUGS)							

Drug	Chemical	Chemical	Chemical	рКа	Log P
Isoniazid		4-Pyridine-carboxylic acid hydrazide	C ₆ H ₇ N ₃ O	1.82	-0.8
Rifampicin	O HO OH OH OH	(2S,12Z,14E,16S,17S,18R,19R,20R, 21S,22R,23S,24E)-1,2-dihydro- 5,6,9,17,19-pentahydroxy-23- methoxy-2,4,12,16,18,20,22- heptamethyl-8-(4-methylpiperazin- 1-yliminomethyl)-1,11-dioxo-2,7- (epoxypentadeca-1,11,13- trienoimino)naphtho[2,1-b]furan-21- yl acetate	$C_{43}H_{58}N_4O_{12}$	1.7	2.7
Ethambutol		2,2'-(1,2-Ethanediyldiimino)-bis-1- butanol	$C_{10}H_{24}N_2O_2$	9.49	-0.3
Pyrazinamide		Pyrazinecarboxamide or Pyrazine-2-carboxamide	C ₅ H ₅ N ₃ O	0.5	-0.6
Rifabutin	$H_{3}C.$ H_{3	9S,12E,14S,15R,16S,17R,18R,19R, 20S,21S,22E,24Z)-6,16,18,20- Tetrahydroxy-1'-isobutyl-14- methoxy-7,9,15,17,19,21,25- heptamethylspiro[9,4- (epoxypentadeca[1,11,13]trienimino)-2H-furo[2',3':7,8]naphth[1,2- d]imidazole-2,4'-piperidine]- 5,10,26-(3H,9H)-trione-16-acetate	$C_{46}H_{62}N_4O_{11}$	6.9	4.5
Rifapentine		(2S,12Z,14E,16S,17S,18R,19R,20R, 21S,22R,23S,24E)-8-{(E)-[(4- cyclopentylpiperazin-1- yl)imino]methyl}-5,6,9,17,19- pentahydroxy-23-methoxy- 2,4,12,16,18,20,22-heptamethyl- 1,11-dioxo-1,2-dihydro-2,7- (epoxypentadeca[1,11,13]trienoimin o)naphtho[2,1-b]furan-21-yl acetate	$C_{47}H_{64}N_4O_{12}$	-1.6	4
Ethionamide	S NH ₂ CH ₃	2-Ethyl-4-pyridinecarbothioamide	$C_8H_{10}N_2S$	4.49	0.5

Cycloserine		D-4-Amino-3-isoxazolidinone	$C_3H_6N_2O_2$	4.4, 7.4	-0.9
Terizidone		4-[({4-[N-(3-oxo-1,2-oxazolidin-4-yl)carboximidoyl]phenyl}methylide ne)amino]-1,2oxazolidin-3-one	$C_{14}H_{14}N_4O_4$	3.54	0.17
p- aminosalicylic acid	COOH OH NH ₂	4-Aminosalicylic acid or 4-Amino-2-hydroxybenzoic acid	C ₇ H ₇ NO ₃	3.25	1.6
Bedaquiline		(1R,2S)-1-(6-bromo-2- methoxyquinolin-3-yl)-4- (dimethylamino)-2-naphthalen-1-yl- 1-phenylbutan-2-ol	$C_{32}H_{31}BrN_2O_2$	1.57	7.25
Delamanid	OCTACE OF THE OC	(2R)-2-methyl-6-nitro-2-[(4-{4-[4- (trifluoromethoxy)phenoxy]-1- piperidinyl}phenoxy)methyl]-2,3- dihydroimidazo[2,1-b][1,3]oxazole	$C_{25}H_{25}F_{3}N_{4}O_{6}$	5.51	6.14
Pretomanid		6S)-2-nitro-6-{[4- (trifluoromethoxy)phenyl]methoxy}- 6,7-dihydro-5H-imidazo[2,1- b][1,3]oxazine	$C_{14}H_{12}F_{3}N_{3}O_{5}$	-3	4.14

Analytical Methods for Anti-TB Drugs: Different official and reported analytical methods such as UV-visible spectrophotometric, Spectrofluorometric, High-performance liquid chromatography (HPLC), High-performance thin-layer chromatography (HPTLC), Gas chromatography (GC), Micellar electro-kinetic capillary chromatography, Electrochemical, Titrimetric, Liquid chromatography / Mass spectrometry (LC/MS), Capillary-electrophoresis, Flow injection analysis, Chemi-luminescence, *etc.* are available for estimation of the first line, oral second line and newer anti-TB drugs in bulk, pharmaceutical formulation and biological matrices.

A review of different official and reported analytical methods is listed as follow:

Official Analytical Methods:

INDLL	2. CV VISIBLE SI LCIROIT		EIHODS		
S. no.	Drug / Sample	Pharmacopoeia	Solvent	Wavelength	Ref.
				of Detection	no.
1	Cycloserine Tablet	IP 2018	Water, 0.2 M NaOH, 1 M acetic	625 nm	29
			acid, sodium nitroprusside solution		
2	Ethionamide & Ethionamide	USP 2013	Methanol	290 nm	30
	Tablets				
3	Rifampicin, Rifampicin	BP 2016	Methanol, phosphates buffer pH	475 nm	31
	Capsule & Rifampicin Oral		7.4		
	Suspension				
4	Pyrazinamide Tablets	IP 2018	Water	268 nm	49
	-	BP 2016			32
5	Rifampicin	EP 2008	Methanol, phosphates buffer pH	475 nm	33
	-		7.4		

 TABLE 2: UV-VISIBLE SPECTROPHOTOMETRIC METHODS

S.	Drug / Sample	Pharmacopoeia	Column	Mobile	Flow Rate	Wavelength of Detection	Ref.
1	Isoniazid & Isoniazid Tablets	IP 2018	ODS (15 cm × 4.6 mm, 5 μm)	A mixture of a solution prepared by dissolving 1.4 g disodium hydrogen phosphate and 1 ml of triethylamine to 1000 ml with water (pH 6.0 adjusted by OPA) & Acetonitrile (96:4, v/v)	1	265 nm	34
2	Rifampicin, Rifampicin Capsules, Rifampicin Oral Suspension &Rifampicin Tablets	IP 2018	Octylsilane (10 cm × 4.6 mm, 5 µm)	A mixture of a solution containing 0.1% v/v of OPA, 0.19% w/v of sodium perchlorate, 0.59% w/v of citric acid &2.09% w/v of potassium dihydrogen phosphate & Acetonitrile (65:35, v/v)	1.5	254 nm	35
3	Rifampicin and Isoniazid Tablets	IP 2018	ODS (25 cm × 4.6 mm, 5 μm)	A. A mixture of a buffer solution pH 6.8 prepared by dissolving 1.4 g disodium hydrogen orthophosphate anhydrous in 1000 ml of water (pH 6.8 \pm 0.05 adjusted by dil. phosphoric acid) & Acetonitrile (96:4, v/v) B. A mixture of the buffer solution and Acetonitrile (45:55, v/v) Using mixture, A & B ingradient programme	1.5	238 nm	35
4	Rifampicin, Isoniazid and Ethambutol Tablets 1) For Rifampicin and Isoniazid Tablets 2) For Ethambutol Hydrochloride	IP 2018	1. ODS (25 cm × 4.6 mm, 5 μm) 2. Zorbax SB CN (15 cm × 4.6 mm, 5 μm)	1) A. A mixture of a buffer solution pH 6.8 prepared by dissolving 1.4 g disodium hydrogen orthophosphate anhydrous in 1000 ml of water (pH 6.8 \pm 0.05 adjusted by dil. phosphoric acid) & Acetonitrile (96: 4, v/v) B. A mixture of the buffer solution and Acetonitrile (45:55, v/v) Using mixture, A & B in gradient elution programme 2) A mixture of Acetonitrile & buffer solution pH 7.0 prepared by dissolving 1 ml of triethylamine in 1000 ml of water (pH 7.0 adjusted by dil. phosphoric acid (50: 50, v/v)	1) 1.5 2) 1	1) 238 nm 2) 200 nm	35
5	Rifampicin, Isoniazid and Pyrazinamide Tablets	IP 2018	ODS (25 cm × 4.6 mm, 5 μm)	A. A mixture of a buffer solution pH 6.8 prepared by dissolving 1.4 g disodium hydrogen orthophosphate anhydrous in 1000 ml of water (pH 6.8 \pm 0.05 adjusted by dil. phosphoric acid) & Acetonitrile (96: 4, v/v) B. A mixture of the buffer solution and Acetonitrile (45:55, v/v) Using mixture, A & B in	1.5	238 nm	35

TABLE 3: LIQUID CHROMATOGRAPHIC METHODS

				gradient programme			
6	Rifampicin, Isoniazid, Pyrazinamide and Ethambutol Tablets For Rifampicin Isoniazid and pyrazinamide Tablets 2) For Ethambutol Hydrochloride	IP 2018	ODS (25 cm × 4.6 mm, 5 μm) Zorbax SB CN (15 cm × 4.6 mm, 5 μm)	gradient programme 1) A. A mixture of a buffer solution pH 6.8 prepared by dissolving 1.4 g disodium hydrogen orthophosphate anhydrous in 1000 ml of water (pH 6.8 ± 0.05 adjusted by dil. phosphoric acid) & Acetonitrile (96: 4, v/v) B. A mixture of the buffer solution and Acetonitrile (45:55, v/v) Using mixture, A & B in gradient programme 2) A mixture of Acetonitrile & buffer solution pH 7.0 prapared by discolving 1 ml	1) 1.5 2) 1	1) 238 nm 2) 200 nm	35
				of triethylamine in 1000 ml of water (pH 7.0 adjusted by dil. Phosphoric acid) (50:50, v/v)			
7	Ethambutol hydrochloride, Ethambutol Injection & Ethambutol Tablets	IP 2018	Zorbax SB CN (15 cm × 4.6 mm, 5 μm)	A mixture of buffer solution prepared by dissolving 1 ml of triethylamine in 1000 ml of water (pH 7.0 adjusted by orthophosphoric acid) & Acetonitrile (50:50, v/v)	1	200 nm	36
8	Ethambutol & Isoniazid Tablets 1) For Isoniazid 2) For Ethambutol	IP 2018	1) ODS (15 cm × 4.6 mm, 5 μm) 2) Zorbax SB CN (15 cm × 4.6 mm, 5 μm)	1) A mixture of buffer solution pH 6.8 prepared by dissolving 1.4 g disodium hydrogen phosphate in 1000 ml of water (pH 6.8 \pm 0.05 adjusted by dil. phosphoric acid) & Acetonitrile (96:4, v/v) 2) A mixture of buffer solution prepared by dissolving 1 ml of triethylamine in 1000 ml of water (pH 7.0 \pm 0.05 adjusted by phosphoric acid) & Acetonitrile (50:50, v/v)	1	1) 254 nm 2) 200 nm	36
9	Ethionamide & Ethionamide Tablets	IP 2018	ODS (25 cm × 4.6 mm, 5 μm)	A mixture of buffer solution prepared by dissolving 2 ml of triethylamine in 1000 ml of water (pH 6.0 adjusted by orthophosphoric acid) & Acetonitrile (60:40, v/v)	1	290 nm	37
10	Cycloserine & Cycloserine Capsules	IP 2018	Octylsilane (25 cm × 4.6 mm, 5 μm)	0.1% w/v of methane sulphonic acid & 0.78% w/v potassium dihydrogen orthophosphate in water (pH 6.0 adjusted by dil. NaOH)	1	227 nm	29
11	Isoniazid Injection & Isoniazid Tablets	JP 2006	ODS (15 cm × 4.6 mm, 5 μm)	Dissolve 6.80 g of potassium dihydrogen phosphate in water to make 1000 ml. Separately, to 5.76 g of phosphoric acid add water to make 1000 ml. Mix these solutions to make a solution having pH 2.5. To 500/400 ml of this solution, add 500/600 ml methanol & add 2.86g of sodium	-	265 nm	38

				tridecanesulfonate to dissolve.			
12	Rifampicin & Rifampicin Capsules	JP 2006	ODS (10 cm × 4.6 mm, 5 μm)	Dissolve 4.2 g of citric acid monohydrate and 1.4 g of sodium perchlorate in 1000 ml of a mixture of water, acetonitrile and phosphate buffer solution, pH 3.1 (11:7:2, v/v/v)	-	254 nm	39
13	Isoniazid & Isoniazid Injection	USP 2013	ODS (25 cm × 4.6 mm, 1.5 to 10 μm)	Dissolve 4.4. g of docusate sodium in 600 ml of methanol, add 400 ml of water, (pH 2.5 adjusted by 2N sulfuric acid)	1.5	254 nm	40
14	Isoniazid Tablets	USP 2013	ODS (30 cm × 3.9 mm, 1.5 to 10 μm)	Buffer: Methanol (95:5, v/v) Buffer solution: Prepare a 0.1 M monobasic potassium phosphate solution, adjust with 10 N NaOH to pH of 6.9, add sufficient triethanolamine to obtain a solution having a known concentration of 0.2 mM of triethanolamine & mix	1.5	254 nm	40
15	Rifabutin, Rifabutin Capsules & Rifabutin Oral Suspension	USP 2013	Octylsilane (12.5 cm × 4.6 mm, 5 μm) -For Rifabutin oral suspension Octylsilane (15 cm × 4.6 mm, 5 μm)	A mixture of acetonitrile & 0.1 M monobasic potassium phosphate (pH 6.5 ± 0.1 adjusted by 2N NaOH) (50:50, v/v)	1	254 nm	41
16	Rifampicin, Rifampicin Capsules, Rifampicin for Injection & Rifampicin Oral Suspension	USP 2013	Octylsilane (10 cm × 4.6 mm, 5 μm)	A mixture of water, acetonitrile, phosphate buffer, 0.1 M citric acid & 0.5 M sodium perchlorate (510:350:100:20:20, v/v/v/v/v) For Rifampicin Oral Suspension: (500:360:100:20:20, v/v/v/v/v)	1.5	254 nm	42
17	Rifampicin and Isoniazid Capsules, Rifampicin Isoniazid and Pyrazinamide Tablets, Rifampicin, Isoniazid, Pyrazinamide & Ethambutol Hydrochloride Tablets	USP 2013	ODS (25 cm × 4.6 mm, 5 μm) -For Ethambutol HCl: CN (15 cm × 4.6 mm, 5 μm)	Buffer solution- Dissolve 1.4 g of dibasic sodium phosphate in 1L of water (pH 6.8 adjusted by phosphoric acid) Solution A: Buffer solution & Acetonitrile (96:4, v/v) Solution B: Buffer solution & Acetonitrile (45:55, v/v) Use variable mixtures of solution A & B in gradient elution programme - For Ethambutol Hydrochloride: Buffer solution: Mix 1.0 ml of triethylamine and 1 L of water (pH 7 adjusted by phosphoric acid) Use mixture of Acetonitrile & Buffer solution (50:50, v/v)	1.5 1	238 nm 200 nm	42
10	Oral suspension	051 2015	$cm \times 4.6 \text{ mm}, 5$ μm)	10 mM monobasic sodium phosphate (pH 3.5 adjusted	0.0	215 1111	-5

				by phosphoric acid) (10:90, v/v)			
19	Pyrazinamide	USP 2013	ODS (15 cm \times	Prepare pH 8.0 phosphate	1	270 nm	43
	Tablets		3.9 mm, 1.5 to	buffer (pH 3.0 adjusted by			
			10 µm)	phosphoric acid). Mix 10 ml			
				of acetonitrile with 1 L of			
20	T-1 1 / 1	LIGD 2012		this solution.	1	200	
20	Ethambutol	USP 2013	$CN (15 \text{ cm} \times 4.6)$	Acetonitrile & Buffer	1	200 nm	44
	Hydrochloride T-bl-t-		mm, 5 μm)	1.0 ml of triathalamin and			
	Tablets			1.0 mi of triethylamine and			
				hy phosphoric acid)			
				(1:1 y/y)			
21	Amino	USP 2013	ODS (25 cm \times	Mixture of 0.05 M dibasic	1.5	254 nm	45
	Salicylic Acid		4.6 mm, 1.5 to	sodium phosphate, 0.05 m			
	&		10 µm)	monobasic sodium			
	Amino		• /	phosphate & methanol			
	Salicylic Acid			containing 1.9 g of			
	Tablets			tetrabutyl-ammonium			
				hydroxide (425:425:150,			
				v/v/v)			
22	Cycloserine &	USP 2013	ODS (25 cm \times	Dissolve 0.5 g of sodium 1-	1	219 nm	46
	Cycloserine		4.6 mm, 5 μm)	decanesulfonate in 800 ml			
	Capsules			water, add 50 ml of			
				acetonitrile & 5 ml of			
				glacial acetic acid (pH 4.4			
22	Difabutin	DD 2016	Octubilul (0.110	Agatanitrila & a 12.6 g/ml	1	254 nm	47
23	Kilabutili	BF 2010	$m \times 4.6 \text{ mm} 5$	solution of potassium	1	234 IIII	47
			111×4.0 11111, 3	dihydrogen phosphate (pH			
			µiii)	6.5 adjusted by dil NaOH)			
24	Rifabutin	EP 2008	Octvlsilvl (0.110	Acetonitrile & a 13.6 g/ml	1	254 nm	48
			$m \times 4.6 \text{ mm}, 5$	solution of potassium			
			μm)	dihydrogen phosphate (pH			
				6.5 adjusted by dil. NaOH)			

TABLE 4: TITERIMETRIC METHOD

S. no.	Drug / Sample	Pharmacopoeia	Description	Ref. no.
1	Pyrazinamide	IP 2018	Weigh 0.3 g Pyrazinamide & transfer to the flask of ammonium distillation apparatus. Add 200 ml of water & 75 ml NaOH solution. Boil	49
			& collecting the distillate in 50 ml of 0.05 M sulphuric acid. Boil to the	
			complete distillation of the ammonia and titrate the excess of acid with	
			0.1 M NaOH, using methyl red as an indicator.	
2	Isoniazid Oral Solution	USP 2013	Isoniazid Oral Solution in 50 ml of a mixture of 1 part of KBr in 10 parts of dil HCl Proceed as per Nitrite Titration	40
3	Pyrazinamide	USP 2013	Place about 300 mg of Pyrazinamide in 500 ml Kieldahl flask dissolve in	43
5	i jiužinumue	001 2015	100 ml of water & add 75 ml of 5 N NaOH. Connect the flask to the	15
			condenser, the delivery tube of which dips into 20 ml of boric acid	
			solution. Boil vigorously to complete the distillation of the ammonia.	
			After cooling, add methyl purple & titrate with 0.1 N HCl.	
4	Ethambutol	USP 2013	Add 200 mg of Ethambutol Hydrochloride in a mixture of 100 ml of	44
	Hydrochloride		glacial acetic acid & 5 ml of mercuric acetate. Add crystal violet. Titrate	
	-		with 0.1N perchloric acid. The color change at the endpoint is from blue	
			to blue-green.	
5	Isoniazid	BP 2016	Dissolve 0.250 g Isoniazid in water and dilute 100 ml with water. To 20	50
		EP 2008	ml of the solution, add 100 ml of water, 20 ml HCl, 0.2 g of KBr, and	51
			0.05 ml methyl red solution. Titrate with 0.0167 M potassium bromate until the red color disappears.	
6	Isoniazid	BP 2016	Dilute 0.4 g of Isoniazid to 250 ml with water. To 25 ml of the solution,	50
	Injection		add 25 ml of 0.05 M Br & 5 ml HCl. Allow standing for 15 min. Add 1 g	
			of KI & titrate with 0.1 M sodium thiosulphate using starch mucilage as	
			an indicator.	
7	Isoniazid Tablets	BP 2016	Dissolve a quantity equivalent to 0.4 g of Isoniazid and dilute 100 ml with	50
			water. To 50 ml of the solution, add 50 ml of water, 20 ml HCl, 0.2 g of	
			KBr, and titrate with 0.0167 M potassium bromate. Determining the end-	
			point electrometrically.	
8	Pyrazinamide	BP 2016	Dissolve 0.100 g Pyrazinamide in 50 ml of acetic anhydride. Titrate with	32

		EP 2008	0.1 M perchloric acid, determining the end point potentiometrically.	52
9	Ethambutol	BP 2016	Dissolve 0.200 g of Ethambutol Hydrochloride in 50 ml of water & add 1	53
	Hydrochloride	EP 2008	ml of 0.1 M HCl. Carry out a potentiometric titration, using 0.1 M NaOH.	54
10	Ethambutol	BP 2016	Add 20 ml of 2 M NaOH to a quantity of tablet powder equivalent to 0.2	53
	Tablets		g of Ethambutol Hydrochloride. Extract with three successive 25 ml	
			quantities of a mixture of 3 volumes of chloroform and 1 volume of	
			propan-2-ol. Filter each extract. Add 100 ml anhydrous acetic acid to the	
			combined extracts & carry out non-aqueous titration, using 1-	
			naphtholbenzein solution as an indicator.	
11	Ethionamide	BP 2016	Dissolve 0.150 g of Ethionamide in 50 ml anhydrous acetic acid. Titrate	55
		EP 2008	with 0.1 M perchloric acid, determining the end point potentiometrically.	56
12	Isoniazid	JP 2006	Dissolve 0.3 g Isoniazid in 50 ml acetic acid & 10 ml of acetic anhydride.	38
			Titrate with 0.1 mol/L perchloric acids, until the color of the solution	
			changes from yellow to green.	
13	Pyrazinamide	JP 2006	Dissolve 0.1 g Pyrazinamide in 50 ml of acetic anhydride. Titrate with 0.1	57
			mol/L perchloric acid, determining the end point potentiometrically.	
14	Ethambutol	JP 2006	Dissolve 0.2 g Ethambutol Hydrochloride in 20 ml of water & add 1.8 ml	58
	Hydrochloride		copper (II) sulfate. Add 7 ml of NaOH with shaking, add water to make	
			50 ml. To 10 ml of this solution, add 10 ml of ammonia-ammonium	
			chloride buffer of pH 10.0 and 100 ml water. Titrate with 0.1 mol/L	
			disodium dihydrogen ethylenediamine tetraacetate until the color of the	
			solution changes from blue-purple to light yellow.	
15	Ethionamide	JP 2006	Dissolve 0.3 g Ethionamide in 50 ml of acetic acid. Titrate with 0.1 mol/L	59
			perchloric acids, until the color of the solution changes from orange-red	
			to dark orange-brown, using 2 ml p-naphtholbenzein solution as an	
			indicator.	

Reported Analytical Methods: 1. UV-Visible Spectrophotometric Methods:

TABLE 5: UV-VISIBLE SPECTROPHOTOMETRIC METHODS

S.	Drug / Sample	Method	Solvent	Linearity Range	Wavelength of	Ref.
no.				μg/ml	Wavelength of Detection420 nm420 nmFor Method A: 520 nmFor Method B: 610 nm340 nm507 nm760 nm645 nm	no.
		Isonia	zid			
1	Isoniazid in urine	Spectrophotometric	Distilled water	1.37-13.70	420 nm	60
		(Based on the formation of an orange,				
		yellow colour complex between				
		isoniazid and ammonium				
		metavanadate in an acid medium)				
2	Isoniazid in	Spectrophotometric	Distilled water	For Method	For Method A:	61
	pharmaceuticals	(Using Cerium (IV)		A: 0.3–3.0	520 nm	
		and Two Acid Dyes)		For Method	For Method B:	
		Method A (using methyl orange)		B: 0.5–7.0	610 nm	
		Method B (using indigo carmine)				
3	Isoniazid in presence	Spectrophotometric	Distilled water	0-32	340 nm	62
	of Rifampicin in	(using isatin as a reagent)				
	pharmaceuticals &					
	urine					
4	Isoniazid in pure &	Spectrophotometric	Distilled water	1-15	507 nm	63
	pharmaceutical	(Based on the oxidation of 4,5-				
	formulation	dihydroxy-1,3-benzenedisulfonic acid				
		(Tiron) by sodium				
		metaperiodate (SPI) followed by				
		oxidative coupling with INH				
		in an alkaline medium.				
5	Isoniazid in	Spectrophotometric	Water	For Method	760 nm	64
	pharmaceuticals	(Redox-Reaction Based)		A: 0.5–10.0		
		Method A (using Folin-Ciocalteu		For Method		
		reagent)		B: 0.2–3.0		
		Method B (using iron (III) and				
		ferricyanide)				
6	Isoniazid in	Spectrophotometric	Water & Ethanol	2–25	645 nm	65
	pharmaceuticals	(Using 6,7-				
		dichloroquinoline-5,8-dione)				
7	Isoniazid in	Spectrophotometric	Distilled	0.5-2.5	364 nm	66
	pharmaceuticals	(Using Natural Aldehyde like cis-	Water			

8	Isoniazid in	cinnamaldehyde) Spectrophotometric	Methanol	0.25-5	421 nm	67
9	pharmaceuticals Isoniazid in bulk &	(Using its Schiff's base derivatives) Visible Spectrophotometric	Ethanol	100-600	395 nm	68
	pharmaceuticals	(based on the formation of yellow colored chromogen with ethanolic p- dimethylamino benzaldehyde solution				
		in the presence of conc. HCl)				
10	Isoniazid in pure & pharmaceutical formulation	(Using vanillin)	0.5M ethanolic HCl acid	1-12	405 nm	69
11	Isoniazid in Tablets	Colorimetric	Distilled water	3-18	530 nm	70
12	Isoniazid in bulk & pharmaceutical dosage forms	Colorimetric (using ethyl vanillin in presence of 0.5M NaOH)	Distilled Water	2-16	410 nm	71
	dosage forms.	Isoniazid in combinati	on with other drugs			
13	Isoniazid and	Spectrophotometric	Distilled	5-25	Isoniazid: 263 nm	72
15	Pyridoxine in tablet dosage form	(Simultaneous Equation Method)	Water	5-25	Pyridoxine: 290 nm	12
14	Isoniazid (INH) and	Spectrophotometric	Deionised water	Isoniazid:	Isoniazid: 440 nm	73
	Ritodrine	(Based on		0.5-20	Ritodrine HCl:	
	Hydrochloride (RTH)	the diazotisation of 4.4'-		Ritodrine HCl:	460 nm	
	in pure dosage forms	sulphonyldianiline (dapsone, DAP) followed by a coupling reaction with either INH or RTH in sodium		0.5-18	400 IIII	
		hydroxide medium)				
15	Isoniazid and	Spectrophotometric	Phosphate buffer	5-30	Iso-absorptive	74
15	Lamivudine in	(Q-absorption ratio)	(pH7.4)	5 50	noint:	74
	markatad	(Q-absorption ratio)	(p117.4)		246 nm	
	formulations				Second wavelength: 272	
					nm	
16	Isoniazid	Spectrophotometric	Methanol	Isoniazid:	Isoniazid: 262.2-	75
	and Pyridoxine HCl in	(Area under curve)		5-15	272.2 nm	
	commercial tablets			Pvridoxine HCl:	Pvridoxine HCl:	
				6–18	289.8-299.8 nm	
17	Isoniazid and	Spectrophotometric	Distilled water	Method A	Method A:	76
17	Difampicin from	Method A: Direct UV	Distince water	Isoniazid:	Isoniazid:	70
	nharma aguti agl	speatrenhotomatria massurament		2.42	150111aZIU.	
		Mathad D. Daastian of drags with N		2-42 D:fi-i	204 IIII Difeensi in 474	
	preparations and	Method B: Reaction of drugs with N-		Ritampicin:	Ritampicin: 4/4	
	biological fluids	bromosuccinimide (NBS)		0.822-65.38	nm	
				Method B:	Method B:	
				Isoniazid:	Isoniazid:	
				0.1-3.4	572 nm	
				Rifampicin: 0.5-	Rifampicin: 572	
				15.9	nm	
18	Isoniazid Rifampicin	Spectrophotometric	Methanol and	Isoniazid:	Isoniazid:	77
	and Piperine in	(Absorption correction method)	Distilled water	12-34.5	262 nm	
	pharmaceutical			Rifampicin: 8-23	Rifampicin:	
	dosage form			Piperine:	477 nm	
				0.4-1.15	Piperine: 338 nm	
19	Isoniazid and	Spectrophotometric	Distilled water	Method A:	Method A:	78
	Ethambutol HCl in	Method A (Reaction of Isoniazid with		Isoniazid:	Isoniazid:	
	pure form,	Iodine – starch solution		1-6	572 nm	
	pharmaceutical	Method B (Reaction of Isoniazid and		Method B:	Method B:	
	preparations and	Ethambutol hydrochloride with		Isoniazid:	Isoniazid:	
	biological fluids	Hydroquinone solution)		2-100	310 nm	
				Ethambutol HCl:	Ethambutol HCl:	
				0.5-11.0	218 nm	
		Rifamı	picin			
1	Rifampicin in bulk, capsule & spiked	Spectrophotometric	Method A: 0.1 M HCl	1.5-30	Method A: 263 nm	79
	human urine		Method B: 0.1 M		Method B: 259	
			H_3PO_4		nm	
2	Rifampicin in bulk	Spectrophotometric	Methanol	5-13	337 nm	80
	and capsule					
3	Ritampicin in a	Spectrophotometric	Ethyl acetate	2.5-35.0	344 nm	81

	mixture of Isoniazid					
4	Rifampicin	Visible	Buffer solution	5-50	510 nm	82
	pharmaceutical	Spectrophotometric	(pH=7.0)	5.50	510 mm	02
	formulations					
5	Diferenciation and	Rifampicin in combina	tion with other drug	S Diferenciation 5, 25	D:f	02
5	Isoniazid in combined dosage form	(Simultaneous Equation Method)	Ethanol	Isoniazid: 5-25	nm Isoniazid: 263 nm	83
6	Rifampicin and Piperine in combined capsule dosage form	Spectrophotometric (Second order derivative)	Methanol	Rifampicin: 10- 60 Piperine: 2-20	ZCP for Rifampicin: 241 nm ZCP for Piperine: 341 nm	84
7	Rifampicin and Piperine in combined capsule dosage form	Spectrophotometric (Dual Wavelength)	Methanol	Rifampicin: 10- 60 Piperine: 1-10	Rifampicin: 286 and 357 nm Piperine: 356 nm and 479 nm	85
8	Rifampicin and Piperine in combined capsule dosage form	Spectrophotometric (Q-absorption ratio)	Methanol	Rifampicin: 5-40 Piperine: 2-20	Iso-absorptive point: 387 nm Second wavelength: 337	86
9	Rifampicin & Isoniazid in urine and pharmaceutical formulation	Spectrophotometric (Multivariate Visible)	Deionized water	Rifampicin: 8-57 Isoniazid: 1.5-7	nm Rifampicin: 449 nm Isoniazid: 455 nm	87
		Etham	butol			
1	Ethambutol in pure form and in pharmaceutical formulations	Spectrophotometric (Using triphenyl methane dyes viz., Bromocresol Green (BCG), Bromocresol Purple (BCP) and Bromophenol Blue (BPB))	Distilled Water	BCG: 2.0-25 BCP: 3.0-30 BPB: 4.0-40	BCG: 420 nm BCP: 419 nm BPB: 415 nm	88
2	Ethambutol in pure form & pharmaceutical formulations	Spectrophotometric (based on reaction of the drug with 2,4-dinitro-1-fluorobenzene under stipulated conditions)	Distilled Water	5-40	$376 \pm 1 \text{ nm}$	89
		Pyrazin	amide			
1	Pyrazinamide in bulk and	Spectrophotometric Method A: Area under curve	Water	Method A: 2-16	Method A: 264- 274 nm	90
	pharmaceutical dosage form	Method B: Second order derivative		Method B: 2-16	Method B: 270 nm	
2	Pyrazinamide (PYN) and its impurity Pyrazine-2-carboxylic acid (PYA)	Spectrophotometric Method A: Third order derivative Method B: First order derivative	Methanol	PYN: 5-35 PYA: 5-30	Method A: PYN:276.2 nm PYA:274.6 nm Method B: PYN:225.8 nm PYA:245.2 nm	91
		Pyrazinamide in combin	ation with other dru	igs		
3	Pyrazinamide (PYZ), Rifampicin (RIF) and Isoniazid (INH) in combined pharmaceutical dosage forms	Spectrophotometric (Second order derivative)	0.1N HCl	PYZ: 5-15 RIF: 6-12 INH: 6-18	PYZ:253.80 nm RIF:299.80 nm INH:302.40 nm	92
1	Difabutin in	Rifab Spectrophotometric	Distilled water	Mathod A.	Method A: 520	02
1	pharmaceutical formulations and in bulk drugs	Method A: Quantitative precipitation of RFB with iodine Method B: Quantitative precipitation of RFB with Tannic acid	Distilled water	25-150 Method B: 10-60	nm Method B: 460 nm	95
		Rifape	ntine			
1	Rifapentine in pure	Visible Spectrophotometric	0.1N HCl	5-50	478 nm	94

	pharmaceutical					
2	formulations		M - 41 1	4.24	224	05
2	drug and tablata	Spectrophotometric	Methanol	4-24	334 nm	95
	ulug allu tablets	(Alea under curve)	amida			
1	Ethionamide in bulk	Spectrophotometric	Phosphate buffer	6-18	288 nm	96
1	tablet and	Spectrophotometre	(nH 7 4)	0-10	200 IIII	70
	nanoparticles		(pii 7.4)			
2	Ethionamide in	Spectrophotometric	Methanol & water	5-25	288 nm	97
-	pharmaceuticals	Specifophotometre		5 25	200 IIII	21
3	Ethionamide in	Spectrophotometric	Water	2.5-35	550 nm	98
U	pharmaceuticals			20		
4	Ethionamide in	Spectrophotometric	0.1 M HCl &	Method A:	Method A: 760	99
	pharmaceuticals	Method A: Using Folin–Ciocalteu	Water	1-40	nm	
	F	Method B: Using iron (III)-		Method B:	Method B: 760	
		ferricvanide		0.2-4	nm	
5	Ethionamide in	Spectrophotometric	Chloroform	Method A:	Method A: 450	100
	pharmaceuticals	(Using two sulphonphthalein dyes)		0.4-10	nm	
	1	Method A: Using bromophenol		Method B:	Method B: 450	
		blue		0.5-14	nm	
		Method B: Using bromothymol blue				
		Cyclos	serine			
1	Cycloserine in bulk &	Spectrophotometric	0.01N HCl	5-25	Method A:	101
	capsule dosage form	Method A: Area under curve			217 nm	
		Method B: First order derivative			Method B:	
					217 nm	
2	Cycloserine in	Spectrophotometric	Borate buffer (pH	2-8	348 nm	102
	pharmaceuticals	(Using Chloranil)	9)			
		Terizi	idone			
1	Terizidone in bulk	Spectrophotometric	0.1N NaOH	4-12	Method A:	103
	and	Method A:Area under curve			273 nm	
	capsule dosage form	Method B: First order derivative			Method B:	
					273 nm	
		p-Aminosal	licylic Acid			
1	p-Amino salicylic	Spectrophotometric	Ethanol	0.4-2.0	Method A: 460	104
	Acid in tablets	(Using derivatizing reagents)	Method A: 3M		nm	
		Method A: Using p-	HCl-KCl		Method B: 555	
		dimethylaminobenzaldehyde (DAB)	buffer(pH 0.5)		nm	
		Method B: Using p-	Method B: 5M			
		dimethylaminocinnamaldehyde	HCl-KCl buffer			
		(DAC)	(pH 0.5)			
	N 1 11 1 1 1 1	Bedaq	uiline			10.5
1	Bedaquiline in bulk	Spectrophotometric	Acetonitrile	15-75	285 nm	105
	and pharmaceutical	Method A: Zero order derivative				
	tormulations	Method B: Area under curve				

2. Spectrofluorimetric Methods:

TABLE 6: SPECTROFLUORIMETRIC METHODS

S.	Drug / Sample	Method	Solvent	Linearity	Wavelength of	Ref.
no.				Range	Detection	no.
					[λex/λem]	
		Isoniaz	id			
1	Isoniazid (INH),	Spectrofluorimetric	Methanol	INH=	271/375 nm	106
	Ethambutol (EMB),	(Based on measuring the		0.1-0.35 µg/ml		
	Pyrazinamide (PZA)	quenching effect of studied drugs		EMB=		
	and Rifampicin (RIF) in	on		1-4 µg/ml		
	pure and pharmaceutical	the fluorescence intensity of		PZA=		
	dosage forms	NBS-phenothiazine oxidation		0.1-1 µg/ml		
		product (NBS-Phz))		RIF=		
				1-5		
		Ethionan	nide			
1	Ethionamide (ETN) &	Spectrofluorimetric	Distilled water	ETN= 0.25-2.5	ETN=	107
	Carbocisteine (CBC) in	(Based on the		CBC= 0.05-0.9	339/424 nm	
	their dosage forms	reaction of drugs with roth's			CBC=	
		reagent (o-phthaldehyde) to get a			329/431 nm	

		highly fluorescent isoindole										
		product)										
	p-Aminosalicylic Acid											
1	p-Aminosalicylic acid	Spectrofluorimetric	sodium acetate	0.051-12 Mm	297/394 nm	108						
			buffer (pH 4.0)									
2	p-Aminosalicylic acids	Spectrofluorimetric	Water	PAS: 0-40	In alkaline	109						
	(PAS) & p-A	(Using terbium-sensitized		µmol/L	solution=							
	minobenzoic (PABA) in	Luminescence)		PABA:0-10	324/546 nm							
	biological fluids			µmol/L	In acidic solution=							
					292/546 nm							

3. Chromatographic Methods: A. Liquid Chromatographic Methods:

TABLE 7: LIQUID CHROMATOGRAPHIC METHODS

S.	Drug / Sample	Method	Column	Mobile	Flow Rate	Detection	Ref.
no.				phase	(ml/ min)		no.
			Isonia	azid			
1	Isoniazid in human	HPLC	VP-ODS C18	Aquabidest: Acetonitrile	1	UV	110
	plasma		(250 mm x 4.6 mm,	(97:3, v/v)		262 nm	
			5 µm)				
2	Isoniazid in plasma,	HPLC	Waters,	0.1 M phosphate buffer (pH 5	0.9	PDA	111
	brain, liver and kidney		Symmetry Shield	adjusted with ortho phosphoric		254 nm	
	samples and in solid		RP-18 (150 mm x	acid) and methanol (50:50,			
	lipid nanoparticles		4.6 mm, 5 μm)	v/v)			
3	Isoniazid in serum	HPLC	C18	Acetonitrile, water,	1	UV	112
			(250 mm x 4.6 mm,	triethylamine & acetic acid		340 nm	
			4 μm)	(400:600:2:1, v/v/v/v)			
4	Isoniazid in rat plasma	HPLC	C18	Hexane sulphonate 20 mM	1	UV	113
			(150 mm x 4.6 mm,	(pH 2.47) & Methanol (65:35,		265 nm	
			5 μm)	v/v)			
5	Isoniazid	HPLC	C18	5.3% ethanol, 93.7% water,	1	UV	114
			(250 mm x 4.6 mm,	1% acetic acid		265 nm	
			5 μm)				
6	Isoniazid in	HPLC	Pinnacle II	0.05 M ammonium acetate	1.2	UV	115
	human		C18 (150 mm x 4.6	buffer		275 nm	
	plasma		mm. 5 um)	(pH 6): Acetonitrile (99:1, v/v)			
	•		Isoniazid in combinati	ion with other drugs			
7	Isoniazid &	RP-HPLC	XDB C18 (150 mm	KH_2PO_4 buffer (pH 4.5):	0.8	PDA	116
	Rifampicin in bulk and		x 4.6 mm, 5 um)	Methanol (60:40, v/v)		258 nm	
	pharmaceutical						
	formulations						
8	Isoniazid &	RP-HPLC	Phenomenex Luna	Methanol and water	1	UV	117
	Rifampicin in		C18 (150 mm x 4.6	(10.90, v/v)	-	268 nm	
	nanoparticle drug		mm. 5 um)	(10000, 117)		200 1111	
	formulations		, e p)				
9	Isoniazid &	HPLC	Octasilil C8 (250	10 mM triethylamine pH 10.5.	1	UV	118
-	Omenrazole		mm x 4 6 mm 5	acetonitrile (67:33 v/v)		260 nm	110
	determination in		um)			200 mm	
	human serum		µIII)				
10	Isoniazid & Acetyl	ны с	ODS (150 mm \times 3	20 mM 1-bexanesulfonic acid	0.4	UV	119
10	isoniazid in plasma	III LC	$mm 35 \mu m$	sodium salt solution	0.4	290 nm	11)
	isoinuzid in plusinu		min, 5.5 µm)	(pH 3 adjusted with		290 mm	
				phosphoric acid) and			
				acetonitrile in gradient elution			
				program			
11	Isoniazid and Acetyl	ны с	C8 (250 mm x 4 6	Water and methanol (80:20	12	ΡΠΔ	120
11	Isoniazid in urine	III LC	$mm 5 \mu m$	$\frac{v}{v}$	1.2	274 nm	120
12	Isoniazid (INH) &	RD-HDI C	$C_{18}(150 \text{ mm y } 1.6 \text{ mm } 1.6 $	0.1% trifluoroacetic acid	1		121
12	Ciprofloyacin	KI -III LC	$mm 5 \mu m$	acetonitrile (70:30 y/y)	1	272 nm	121
	Hydrochloride		min, 5 µm)			272 1111	
	anconsulated in lipid						
	nolymeric hybrid						
	nononerticles						
13	Isoniazid and its	HPLC	C18(250 mm v 1.6)	A potassium dihydrogen	15	PD 4	122
15	related substances in	III LC	$(250 \text{ mm} \times 4.0 \text{ mm})$	arthophosphata huffer of TI	1.5	254 nm	122
	related substances III		iiiii, 5 µiii)	ormophosphate burlet of pH		234 1111	

	Isoniazid and			6.9			
	Ethambutol HCl tablet						
14	Isoniazid and Ethambutol in tablet	RP-HPLC	ODS C18 (250 mm x 4.6 mm, 5 μm)	0.05M Phosphate buffer (pH 4.6) and Acetonitrile (30:70, $v(v)$	1	PDA 255 nm	123
15	Isoniazid -pyridoxine	HPLC	ODS (250 mm x 4.6 mm 5 um)	Methanol: water (60:40, v/v)	2	293 nm	124
16	Isoniazid and Ethambutol in pharmaceuticals	HPLC	C18 Thermo Hypersil ODS, (250 mm x 5.4 mm,	Methanol: ammonium acetate buffer (pH-7.03) (50:50, v/v)	1.3	UV 276 nm	115
17	Isoniazid, Rifampicin in tablet dosage form	HPLC	4.5 μm) Inertsil (250 mm x 4.6 mm, 5 μm)	Water (pH 4.5 adjusted with sodium dihydrogen phosphate): Acetonitrile (40:60, v/v)	1	UV 274 nm	125
18	Isoniazid, Ethambutol Hydrochloride & Rifampicin in tablet formulation	RP-HPLC	Prontosil C18 (250 mm x 4.6 mm, 5 μm)	Acetonitrile: 0.02M sodium dihydrogen phosphate buffer (pH 6.5 adjusted with orthophosphoric crid) (60:40, v(r))	1	UV 208 nm	126
19	Isoniazid, Thiacetazone and Pyridoxine HCl in tablet dosage form	RP-HPLC	Inertsil ODS Zodiac C18 (250 mm x 4.6 mm, 5 μm)	Ammonium Acetate: acetonitrile (30:70, v/v)	1	UV 254 nm	127
20	Isoniazid, Thiacetazone and Pyridoxine in tablet design form	RP-HPLC	Hypersil ODS C18 (150 mm x 4.6 mm, 5 μm)	Ammonium formate buffer: acetonitrile (60:40, v/v)	1	UV 254 nm	128
21	Isoniazid, Rifampicin & Piperine in	HPLC	E-Merck RP-18 (250 mmx 4.0 mm,5 μm)	Sol. A: Water + 0.1% acetic acid buffer, 2.5mM	0.4	UV 263 nm	115
22	pharmaceuticals Isoniazid, Rifampicin, Piperine in pure & pharmaceutical dosage form	RP-HPLC	LC18 (250 mm x 4.6 mm, 5 μm)	Sol. B: Acetonitrile + 0.1% acetic acid buffer (10:90, v/v) 0.01M Sodium dihydrogen orthophosphate, pH 6.5 and acetonitrile (40:60, v/v)	0.9	PDA 282 nm	77
			Rifam	picin			
1	Rifampicin in complex pharmaceutical formulation and human serum	HPLC	Zorbax C18 (250 mm x 4.6 mm, 5 μm)	Methanol and water in gradient programme	1	UV 333.6 nm	129
2	Rifampicin in human plasma	HPLC	Phenomenex ODS C18 (150 mm x 4.6 mm, 5 μm)	Acetonitrile and 10mM potassium dihydrogen phosphate (pH adjusted to 3.2) (40.60 y/y)	1	UV 337 nm	130
3	Rifampicin in cerebrospinal fluid and plasma of the rabbit	HPLC	C8 (250 mm x 4.6 mm, 5 μm)	Accontrile: 10 mM phosphate buffer of pH 3.5 (48; 52 y/y)	1	215 nm	131
4	Rifampicin in human plasma	HPLC	Chromolith RP8 column (100 mm x	0.05 m acetate buffer pH 5.7: acetonitrile (35:65, v/v)	1	UV 335 nm	132
5	Rifampicin in dried bloods spots	HPLC	C-8 (Waters, Sunfire (250 mm x 4.6 mm,	50 mM ammonium acetate buffer pH 4.5, Acetonitrile and Mathanol (40:30:30, $y/y/y$)	0.5	UV 261 nm	133
6	Rifampicin in bulk and pharmaceutical dosage	RP-HPLC	C18 (250 x 4.6 mm, 3.5 μm)	Acetonitrile and water ($80:20$, v/v)	0.8	UV 237 nm	134
7	Rifampicin in plasma	RP-HPLC	C18 (250 mm x 4.0 mm 4 um)	phosphate buffer pH 7.4: methanol (75:25 v/v)	1.5	UV 475 nm	135
8	Rifampicin in bulk form and capsules	UPLC	Waters Acquity UPLC BEH C18 (100 mm x 2.1 mm 1 7 um)	Milli-Q water and acetonitrile (50:50, v/v)	0.4	UV 235 nm	136
9	Rifampicin in human	UPLC	BEH	Acetonitrile & 0.05 M acetate	0.5	UV	137

10	Rifampicin in human Plasma, broncho-alveolar lavage fluid and alveolar cells	HPLC	Ultrasphere octyl (150 mm x 4.6 mm, 5 µm)	36% acetonitrile in water, 0.2% phosphoric acid, and 0.5% hydrogen peroxide adjusted to pH 4.5 with sodium hydroxide	1	Fluores- cence 380/490 nm	138
11	Rifampicin in serum	HPLC	Phenomenex Prodigy ODS (150 mm x 4.6 mm, 5 µm)	0.1mmol/L phosphate buffer pH 4.8: methanol (70:30, v/v)	1	335 nm	82
12	Rifampicin	RP-HPLC	ODS C18 (150 mm x 4.6 mm, 3.5 μm)	Potassium dihydrogen phosphate buffer (pH 3 adjusted with o-phosphoric acid) and acetonitrile (50:50, v/v)	1	PDA 238 nm	82
13	Rifampicin In tablet dosage form	RP-HPLC	C18 (250 mm x 4.6 mm, 5 µm)	Acetonitrile: 0.05M potassium phosphate buffer (38:62, v/v)	1	UV 335 nm	125
14	25-Desacetyl Rifampicin (25-DR) in human urine	HPLC	Agilent Eclipse XDB C18 (250 mm x 4.6 mm, 5 µm)	Methanol: 0.01 M sodium phosphate buffer pH 5.2 (65:35, v/v)	0.8	254 nm	139
			Rifampicin in combinat	tion with other drugs			
15	Rifampicin and 25-	HPLC	C18 (250 x 4.6 mm,	Methanol and 0.058 M sodium	4.7	UV	140
	desacetyl-rifampicin in plasma		5 μm)	nitrite solution (63:37, v/v)		335 nm	
16	Rifampicin and 25-O- Desacetyl Rifampicin in vitro metabolism	HPLC	A Phenomenex Luna C-18 (150 mm × 4.6 mm, 5 μm)	Water & methanol in gradient elution program	0.8	PDA 254 nm	141
17	Rifampicin and desacetyl rifampicin in plasma and urine	HPLC	Phenomenex Luna C18 (250 mm x 4.6 mm, 5 μm)	0.05 M phosphate buffer (pH 2.6): acetonitrile (55:45, v/v)	1.2	PDA 254 nm	142
18	Rifampicin and related compounds in pharmaceuticals	HPLC	C18 monolithic (100 mm x 4.6 mm, 5 μm)	Methanol, acetonitrile, 0.075 M monopotassium phosphate & 1.0 M citric acid (28:30:38:4, v/v)	2	UV 254 nm	143
19	Rifampicin & Clindamycin phosphate in skin permeation studies	HPLC	C18 (150 mm x 4.6 mm, 5 μm)	0.01 M phosphoric acid and methanol in gradient elution program	1	UV 238 nm 200 nm	144
20	Rifampicin &Daptomycin in rabbit plasma	UPLC	Acquity BEH C18 (100 mm x 2.1 mm, 1.7 μm)	Methanol and 0.1% aqueous TFA in gradient elution program	1	UV	145
21	Rifampicin and a flavonoid glycoside	RP-HPLC	RP-18 (250 mm × 4.6 mm, 5 μm)	Acetonitrile & 50 mM phosphate buffer (pH 5.0) (60:40, v/v)	0.8	DAD 340 nm	146
22	Rifampicin and Sulbactam in mouse plasma	HPLC	RP-18 (125 mm × 4.0 mm, 5 μm)	50 mM potassium dihydrogen phosphate solution (pH 4.5) and acetonitrile in gradient elution program	1	DAD 230 nm	147
23	Rifampicin and Piperine in pharmaceutical dosage form	RP-HPLC	C18 (250 mm x 4.6 mm, 5 μm)	Potassium dihydrogen orthophosphate pH 6.5 and acetonitrile (30:70, v/v)	1	PDA 341 nm	148
24	Rifampicin and Ofloxacin in synthetic mixture	HPLC	Kinetex C18, Phenomenex (250 mm x 4.6 mm, 5 μm)	0.03M Potassium dihydrogen phosphate buffer pH 3.0: acetonitrile (55:45, v/v)	0.8	PDA 230 nm	149
25	Rifampicin and Isoniazid in human plasma	HPLC	1.Luna C18 (250 mm x 4.6 mm, 5 μm) 2.Luna C8 (250 mm x 4.6 mm, 5 μm)	1.Methanol:0.02M Potassium phosphate buffer pH 7.0 (75:25, v/v) 2.Methanol: water: perchloric acid: tetrabutylammonium hydroxide solution (20:80:0.05:0.05, v/v/v/v)	0.5 & 1	PDA 339 nm 273 nm	150
26	Rifampicin and Isoniazid in pharmaceutical	RP-HPLC	Kromasil C18 (250 mm x 4.6 nm, 5 μm)	Methanol, acetonitrile and water (60:20:20, v/v/v)	1	UV 254 nm	151

International Journal of Pharmaceutical Sciences and Research

formulations

27	Rifampicin & Hydro- chlorothiazide	HPLC	Phenomenex ODS 2 C18 (150 mm x 4.6	Acetonitrile and 10mM KH ₂ PO ₄	1	337 nm	82
28	Rifampicin and Isoniazid	HPLC	mm, 5 μm) ODS (250 mm x 4.6 nm, 5 μm)	(pH 3.2) (40:60, v/v) Methanol:0.02M disodium hydrogen orthophosphate	1	254 nm	82
29	Rifampicin & isoniazid	HPLC	C18 (250 mm x 4.6 mm, 5 μm)	(75:25, v/v) 0.05M sodium dihydrogen phosphate (pH 3.1) and costopitrile (20:80, v/v)	0.6	254 nm	82
			Etham	hutol			
1	Ethambutol in human	HPLC	CN (150 mm x 4.6	Milli-O water and	1.5	PDA	152
	plasma		mm, 5 μm)	methanol $(85:15, v/v)$		267 nm	
2	Ethambutol in serum	LC	Waters C18 (150mm x 4.6 mm, 5 µm)	Aqueous 72% (v/v) acetonitrile	1	Fluore- scence 345/475	153
						nm	
3	Ethambutol in rat	UPLC	BEH RP 18 (50 mm	Methanol and water	0.1	PDA	154
4	plasma Ethombutol in		x 2.1 mm, 1.7 μ m)	(70: 30, v/v)	1	205 nm	125
4	pharmaceutical dosage form	KP-HPLC	c18, (50 mm x 4.6 mm, 5 μm)	formic acid (70:30:0.1, $v/v/v$)	1	225 nm	125
			Ethambutol in combina	tion with other drugs			
5	Ethambutol Hydrochloride and Isoniazid in fixed dose	RP-HPLC	C18 Thermo Hypersil ODS (250 mm x 5.4mm, 4.5	Methanol: ammonium acetate buffer (pH-7.03)(50:50, v/v)	1.3	PDA 276 nm	155
	formulation		μm) 	••			
1	Durozinomido in		Supplee LC 18 (150	amide 0.02 M	1.5	UN	156
1	human nlasma	HPLC	$mm \ge 4.6 mm = 5$	0.02 M phosphate buffer (pH 7 4) &	1.5	268 nm	130
	numun plusina		um)	methanol (96.8:3.2, v/v)		200 IIII	
2	Pyrazinamide in	HPLC	Phenomenex ODS	Methanol: potassium	1	UV	157
	human plasma		C18 (150 mm x 4.6	dihydrogen phosphate buffer		268 nm	
			mm, 5 μm)	(pH 7.4) (15:85, v/v)			
3	Pyrazinamide in	HPLC	ODS C18 (250 mm	Aquabidest: Acetonitrile	1	UV	158
4	human plasma		x 4.6 mm, 5 μ m)	(9/:3, v/v)	1	262 nm	150
4	in human plasma	nrLC	x 4.6 mm 5 um	0.02M KH2PO4 adjusted to	1	268 nm	139
	bronchoalveolar		x no min, o pin)	pH 2.6 with phosphoric		200 1111	
	lavage, and alveolar			acid			
	cells						
5	Pyrazinamide in bulk	HPLC	Hypersil	Phosphate buffer (pH 4.4):	1	UV	160
	and pharmaceutical		C8 (250 mm x 4.6 mm 2.5 mm)	methanol ($80:20$, v/v)		269 nm	
6	Pyrazinamide	RP-HPLC	$C_{18}(250 \text{ mm x } 4.6 \text{ mm } 10^{-10} \text{ mm } 10^{-$	Acetonitrile and 15mM	1	235 nm	125
Ũ	in tablet dosage form	iu in Le	mm, 5 μm)	potassium dihydrogen (pH 4.0	1	200 1111	123
	U			± 0.1 adjusted with o-			
				phosphoric acid) (11:89, v/v)			
7	Pyrazinamide in bulk	UHPLC	C18 (25 mm x 4.6	Phosphate buffer: acetonitrile	1	PDA	161
8	and formulation Pyrazinamide in	Micellar I C	mm, $1./\mu m$) SPHER-100 C18	$(900:100, \sqrt{v})$ 0.15M sodium dodecyl	1	270 nm	162
0	pharmaceutical	Wheena Le	(250 mm x 4.6 mm)	sulphate and 1% butanol (v/v)	1	269 nm	102
	formulation		5 μm)	buffered at pH3 in gradient			
			• •	elution program			
		P	yrazinamide in combin	ation with other drugs			
9	Pyrazinamide and	HPLC	C8 (250 mm x 4.6	Acetonitrile in 10 mM	1.5	215 nm	163
	Rifampicin in serum		mm, 3.5 μm)	potassium dihydrogen			
				elution program			
10	Pyrazinamide and	HPLC	Zorbax Eclipse Plus	Acetonitrile	1	UV	164
10	Isoniazid in plasma		C18 (150 mm x 4.6	and 20 mM 1-hexane sulfonic		269 nm &	101
	£		mm, 5 µm)	acid sodium salt (pH 2.7		340 nm	
				adjusted with 10 % ortho-			
				phosphoric acid) in gradient			
1.1	D			elution program	1.0	* ** 7	1.00
11	Pyrazinamide and	HPLC	Wakosil C18	Acetonitrile and 0.05M	1.2	UV 275 mm	165
	isomaziu in piasma		$\frac{10}{230} (230 \text{ mm } 3.4.0)$	(1.09 v/v)		275 IIM	
			mm, 5 µm)	(1.), v/v)			

E-ISSN: 0975-8232; P-ISSN: 2320-5148

12	Pyrazinamide and	HPLC	C8 (250 mm x 4.6	Water: methanol	1.5	UV 267 nm	166
13	Pyrazinamide and Isoniazid in synthetic mixture	RP-HPLC	Inertsil-ODS C18 (250 mm x 4.6 mm, 5 um)	Methanol: buffer (pH 4 adjusted with triethylamine) (55:45, y/y)	1	UV 267 nm	167
14	Pyrazinamide & Ethionamide from their	HPLC Ion-Pair	Phenomenex Luna C18 (250 mm x 4.6 mm, 5 μm)	0.01% TFA in water and ACN/MeOH (50:50, v/v) in gradient elution program	1.5	UV 280 nm	168
15	porous microparticles Pyrazinamide, Rifampicin and Isoniazid in combined dosage forms	HPLC	YMC-ODS (150 mm x 4.6 mm, 5 μm)	Water, monobasic potassium dihydrogen orthophosphate and acetonitrile (900:60:40, v/v/v)	1.5	UV 254 nm	169
16	Pyrazinamide, Rifampicin and Isoniazid in pharmaceutical preparations	HPLC	Phenomenex C18 (250 mm x 4.6 mm, 5 μm)	Methanol, water, isopropanol, acetonitrile & 1mM sodium acetate (51:42:3:2:2, v/v/v/v/v)	1.7	UV 333 nm	170
17	Pyrazinamide, Rifampicin and Isoniazid in 0.1M HCl dissolution Medium and Simulated Gastric Fluid	HPLC	Suspelcosil LC18 (250 mm x 4.6 mm, 5 μm)	Methanol and 0.01M sodium dihydrogen orthophosphate buffer containing 0.05% tetramethyl-ammonium chloride (pH 3.5 adjusted with dil. orthophosphoric acid) in gradient elution program	1	UV 254 nm	171
18	Pyrazinamide, Rifampicin and Isoniazid in fixed dose combination	HPLC	μ-bondapak C18 (250-mm x 4.6 mm, 10 μm)	ACN:0.0002M tBAH (42.5:57.5, v/v)	1	UV 260 nm	172
19	Pyrazinamide (PYZ) Rifampicin (RIF) & Isoniazid (INH) in plasma	HPLC	For PYZ &INH Spherisorb C8 (150 mm x 4.6 mm, 5 µm) For RIF Spherisorb C8 (250 mm x 4.6 mm, 5 µm)	For PYZ &INH: 3% acetonitrile in 0.06% TFA For RIF: 80% acetonitrile in 0.1% trifluoroacetic acid	2 & 1.5	For PYZ &INH UV 254 nm For RIF UV 270 nm	173
20	Pyrazinamide, Rifampicin and Isoniazid in human plasma	RP-HPLC	Phenomenex ODS C18 (250 mm x 4.0 mm, 5 μm)	Acetonitrile, methanol andwater (pH5.2) (30:5:65, v/v/v)	1	UV 242 nm	174
21	Pyrazinamide, Rifampicin and Isoniazid in solid lipid nanoparticles	RP-HPLC	ODS C18 (250 mm x 4.0 mm, 5 μm)	 A.OPA buffer (pH 6.8 ± 0.02 with dil. NaOH): acetonitrile (96:4, v/v) B. OPA buffer (pH 6.8 ± 0.02 with dil.NaOH): acetonitrile (45:55, v/v) Mobile phase A & B in gradient elution program 	1.5	PDA 238 nm	175
22	Pyrazinamide, Isoniazid and Indomethacin in pharmaceutical preparation	HPLC	YMC-ODS (150 mm x 4.6 mm, 5 μm)	Water, methanol & tetrahydrofuran (59:39:2, v/v/v)	2	UV 328 nm	176
23	Pyrazinamide, Rifampicin and Isoniazid in tablet dosage form	RP-HPLC	Hypersil C18 (250 mm x 4.6 mm, 5 μm)	0.05 M potassium phosphate buffer (pH 6.0): Methanol (40:60, v/v)	1	UV 254 nm	125
24	Pyrazinamide (PZA), Rifampicin (RIF) Isoniazid (INH) & Acetyl-isoniazid (AcINH) in Human Plasma	HPLC	Synergi Max-RP C12 (250 mm x 4.6 mm, 4 μm)	Methanol, acetonitrile and buffer of 20 mM 1- heptanesulfonic acid sodium (pH2.5 adjusted with H ₃ PO ₄) in gradient elution program	0.8, 1.2, 1.5	DAD PZA= 268 nm AcINH= 265 nm INH= 264 nm RIF=	177
25	Pyrazinamide, Rifampicin, Isoniazid	HPLC	Waters Symmetry C8 (250 mm x 4.6	Acetonitrile and 20 mM phosphate buffer (pH	1.5	341 nm UV 210 nm	178

	& Ethambutol HCl in fixed dose		mm, 5 μm)	6.8)containing triethylamine in gradient elution program			
26	combination tablet Pyrazinamide, Rifampicin, Isoniazid & Ethambutol HCl in fixed dose combination tablet	RP-HPLC	Waters Xterra RP18 (250 mm x 4.6 mm, 5 µm)	phosphate buffer (pH 6.8), 8% acetonitrile and acetate buffer (pH 4.7) in gradient elution program	1	UV 260 nm	125
27	Pyrazinamide (PYZ), Rifampicin (RIF), Isoniazid (INH), and Ethambutol hydrochloride (EMB) in fixed dose combination	HPLC	Purospher STAR RP18e (250 mm x 4.6 mm, 5 μm)	20 mM monobasic sodium phosphate buffer with 0.2% triethylamine (pH 7.0) and acetonitrile in gradient elution program	1.5	DAD PYR, RIF & INH = 238 nm EMB = 210 nm	179
28	Pyrazinamide (PYZ), Rifampicin (RIF), Isoniazid (INH) and Ethambutol hydrochloride (EMB) in fixed dose combination	HPLC	Acclaim Polar Advantage II (150 mm x 4.6 mm, 3 μm)	A: 8% Acetonitrile in 20 mM NaH ₂ PO ₄ (plus 1.5 mL TEA per liter), pH 6.8 B: 50% Acetonitrile in 20 mM NaH ₂ PO ₄ (plus 1.5 mL TEA per liter), pH 6.8	1	UV Channel-1 200 nm & 337 nm Channel-2 238nm	180
29	Pyrazinamide (PYZ), Rifampicin (RIF), Isoniazid (INH), and Ethambutol hydrochloride (EMB) in fixed dose combination tablet	UHPLC	Acclaim Polar Advantage II (100 mm x 2.1 mm, 2.2 μm)	A: 4% Acetonitrile in 20mM NaH ₂ PO ₄ (plus 1.5 mL TEA per liter), pH 6.8 B: 50% Acetonitrile in 20 mM NaH ₂ PO ₄ (plus 1.5 mL TEA per liter), pH 6.8	1	UV Channel-1 200 nm & 337 nm Channel-2 238nm	180
30	Pyrazinamide (PYZ), Rifampicin (RIF), Isoniazid (INH), and Ethambutol hydrochloride (EMB) in fixed dose combination tablet	UHPLC	Waters Acquity BEH C18 (50 mm x 2.1 mm, 1.7 μm)	Triethylamine in phosphate buffer pH 6.8 and acetonitrile (95:5, v/v)	0.4	UV PYR, RIF & INH = 238 nm EMB = 210 nm	181
31	Pyrazinamide, Rifampicin, Isoniazid & Ethambutol HCl in fixed dose combination tablet	UPLC	X bridge C18 (50 mm x 1.7 mm, 3 μm)	Solution-A: Triethylamine and potassium dihydrogen ortho- Phosphate buffer (pH 7.5 adjusted with ortho phosphoric acid) Solution-B: Mixture of methanol and acetonitrile (85:15, v/v) -Mixture of solution- A and	0.5	PDA 290 nm	182
32	Pyrazinamide, Rifampicin, Isoniazid & Pyridoxine HCl in pharmaceutical formulation	RP-HPLC	Phenomenex Luna C18 (250 mm x 4.6 mm, 5 μm)	Acetonitrile and 15 mmol/L potassium dihydrogen phosphate buffer (pH 4.0 ± 0.1 adjusted by orthophosphoric acid) in gradient elution program	1	PDA 235 nm	183
			Rifab	utin			
1	Rifabutin in human plasma	HPLC	C18 (250 mm x 4.6 mm, 5 μm	50mM phosphate buffer, (pH 4.2 adjusted with 1N HCl) & acetonitrile (53:47, v/v)	1.2	UV 265 nm	184
2	Rifabutin	HPLC	C18 (250 mm x 4.6 mm, 5 µm	Acetonitrile + methanol (1:1): water (75:25, v/v)	1	UV 242 nm	185
3	Rifabutin in bulk dosage form	RP-HPLC	Phenomenex C8 Luna (250 mm x 4.6 mm, 5 µm)	Methanol and water (75:25 v/v)	1	UV 240 nm	186

4	Rifabutin in bulk drugs and pharmaceutical	Stability LC	Ace5-C18 (250 mm x 4.6 mm, 5 μm)	50 mM ammonium acetate (pH 4 adjusted by acetic acid)	1	UV 275 nm	187
5	Rifabutin in human plasma	HPLC	Zorbax C8 (250 mm x 4.6 mm, 5 μm)	0.05 M potassium dihydrogen phosphate0.05 M sodium	1	UV 275 nm	188
				(53:47, v/v)			
			Rifabutin in combinat	ion with other drugs			
6	Rifabutin and 25-O-	HPLC	ODS (250 mm x 4.6	Acetonitrile, 0.05 M	1	UV	189
	desacetyl rifabutin in human plasma and		mm, 5 μm)	potassium phosphate (pH 4.2) &		275 nm	
	urine			Triethylamine (38:61.5:0.5, $v/v/v$)			
			Rifane	ntine			
1	Difapanting in bulk	DD HDI C	Inertsil C18 (250	Acetonitrile and 0.01M	0.8	UW/Wisibl	100
1		KI -III LC	mentsii C18 (250		0.8		190
	dosage form		μm)	phosphate buffer, pH (6.0), (80.20 v/v)		478 nm	
2	Pifapantina	ирі С	BDS Hypersil	Λ mixture of 0.025M sodium	1		101
2	Kitapentine	Inclusion	C_{18} (250 mm v 4 6	dibudro con orthonhoonhote	1	1DA 254 nm	171
		mpunty	C18 (250 IIIII X 4.6			234 mm	
		profile	mm, 5 μ m)	buffer (pH /./ adjusted with			
				dil. NaOH) and ACN (90:10,			
				v/v) for mobile phase A			
				(30:70, v/v) for mobile phase			
				B. Use Mobile phase A & B in			
				gradient elution program			
			Ethiona	nmide			
1	Ethionamide in human	HPLC	CN (150 mm x 4.6	Milli-O water and methanol	1.5	PDA	192
-	nlasma		mm 5 µm)	(85.15 v/v)	110	267 nm	
2	Ethionamide in Serum	НЫ С	Hypersil ODS C18	0.02 M disodium hydrogen	15	IIV	193
2	Eunonamide în Seram	III LC	(250 mm x 4.6 mm)	nhosphate huffer: acetonitrile	1.5	291 nm	175
			$(250 \text{ mm} \times 4.0 \text{ mm})$	(75.25 y/y)		271 1111	
3	Ethionamida in dosaga	DD HDI C	Uvporcil RDS C18	(75.25, 777)	1	IW	104
3	form	KF-HFLC	$(150 \text{ mm y 6 mm }^2)$	Acetomitme. water (50.70,	1	297 mm	194
	IOIIII		(150 mm x 6 mm, 5	v/v)		287 1111	
	E4 · · · ·	0.1.11	μm)	A	0.0	T TT 7	105
4	Ethionamide in raw	Stability	ODS C18 (250 mm	Acetonitrile: 0.05%	0.8	0 V	195
	material &	HPLC	x 4.6 mm, 5 μm)	trifluoroacetic acid		270 nm	
	pharmaceutical dosage			solution $(30:70, v/v)$			
	forms						
5	Ethionamide in spiked	RP-HPLC	C18 (250 mm x 4.6	Methanol: water $(40:60, v/v)$	1	UV	196
	human plasma		mm, 5 μm)			275 nm	
6	Ethionamide in	RP-HPLC	Grace C18 (250 mm	Methanol: 0.1% Ortho	0.7	UV	97
	pharmaceutical dosage		x 4.6 mm, 5 μm)	Phosphoric acid (20:80, v/v)		288 nm	
	forms						
		I	Ethionamide in combina	ation with other drugs			
7	Ethionamide,	Stability	Hibar RP 18 (150	0.03M sodium citrate buffer	1	UV	197
	Pyridoxine. and	RP-HPLC	mm x 4.6 mm. 5	(pH 5.0 adjusted with glacial		320 nm	
	Moxifloxacin in fixed		μm)	acetic acid) and methanol in			
	dose		. /	gradient elution program			
	combination tablets			5 ·····			
			Cyclos	erine			
1	Cycloserine in human	HPLC	C18 (250 mm y 4.6)	0.1% formic acid solution and	1	Fluore	108
1	nlasma	III LC	mm_{5} (250 mm)	a mixture of methanol and	1	scence	170
	plasma		min, 5 µm)	a mixture of methanol and $acetonitrile (1.1) (85.15 m/m)$		381/450	
				accomune (1.1) (03.13, v/v)		561/450	
2	D Cualarrian 0	IC	IIumanul DDC C10	A actonituila 20 Maradin	1		100
2	D-Cycloserine &	LC	(250 mm AC	Acetoniume, 20mivi sodium	1	210	199
	related substance		(250 mm x 4.6 mm,	octane sulphonate, 0.2M		219 nm	
			5 µm)	potassium dihydrogen			
				phosphate buffer pH 2.8 &			
				water in gradient elution			
				program			
3	D-Cycloserine drug	RP-HPLC	Agilent Zorbax	20mM Na ₂ HPO ₄ (pH 7	1	UV	200
	substance		SB phenyl (250 mm	adjusted with ortho-		335 nm	
			x 4.6 mm, 5 µm	phosphoric acid) and			
				acetonitrile (95:5, v/v)			
			Towini	dono			

1	Terizidone	Stability RP-HPLC	HiQSil C8 (250 mm x 4.6 mm, 5 μm)	Ammonium acetate buffer (pH 3 adjusted with glacial acetic acid) and methanol (60:40, v/y)	1	PDA 264 nm	201
2	Terizidone in plasma	HPLC	HS C18 (150 mm x 4.6 mm, 5 μm)	Acetonitrile and water both containing 0.1% formic acid in gradient elution program	1	UV 264 nm	202
			p-Aminosali	icylic Acid			
1	p-Aminoslicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues	HPLC	C18 (250 mm x 4.6 mm, 5 μm)	17.5 mM potassium phosphate buffer (equal molar concentration of both monobasic and dibasic potassium salts with a pH of 3.5 adjusted by phosphoric acid) and methanol in gradient elution program	1	Fluoresce nce 337/432 nm	203
2	p-Aminosalicylic acid (PAS) and its degradation product m-aminophenol (MAP) in pellets	Ion-pair HPLC	LiChrospherRP 18 (125 mm x 4 mm, 5µm)	20 mM phosphate buffer, 20 mM tetrabutylammonium hydrogen sulphate & methanol (16%, v/v) (pH 6.8) gradient elution program	1	UV 233 nm	204
			Bedaqı	uiline			
1	Bedaquiline	RP-HPLC	Chiralcel OJ-3R (cellulose tris-[4- methylphenyl]benzo ate, 150 mm x 4.6 mm, 3 µm)	10 mM buffer of triethylamine/phosphoric acid pH 7.0 and acetonitrile (40:60, v/v)	0.1-1.4	UV 227 nm	205
			Bedaquiline in combina	tion with other drugs			
2	Bedaquiline (BED), Moxifloxacin (MOX) & Pyrazinamide (PYZ) in pharmaceutical powder formulation for inhalation	RP-HPLC	Luna C18 (150 mm x 4.6 mm, 5 μm)	Methanol and triethylamine phosphate buffer (pH 2.5) in gradient elution program	1.2	PDA BED= 225 nm MOX= 296 nm PYZ= 269 nm	206
			Preton	nanid			
1	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in an inhaler	HPLC	Luna C18 (150 mm x 4.6 mm, 5 μm)	Methanol and trimethylamine phosphate buffer (pH 2.5) in gradient elution program	1	PDA PRM= 330 nm MOX= 296 nm PYZ= 269 nm	207

B. Thin Layer Chromatographic Methods:

TABLE 8: THIN LAYER CHROMATOGRAPHIC METHODS

S.	Drug / Sample	Method	Stationary	Mobile	Retention factor	Detection	Ref.
no.			Phase	phase	$(\mathbf{R}_{\mathbf{f}})$		no.
		Iso	niazid in combina	ation with other drugs			
1	Isoniazid (INH) and	HPTLC	Silica gel 60	Ethyl Acetate:	INH= 0.35	254 nm	208
	Acetyl isoniazid (AcINH) in serum			methanol (70:30, v/v)	AcINH=0.5		
2	Isoniazid (INH) and	Stability	Silica gel 60	n-hexane, 2propanol,	$INH = 0.59 \pm 0.02$	254 nm	209
	Rifampicin (RIF) in bulk	indicating	F254	acetone, ammonia,	$RIF = 0.73 \pm 0.04$,		
	drugs and formulations	HPTLC		formic acid,			
				(3:3.8:2.8:0.3:0.1,			
				v/v/v/v/v)			
3	Isoniazid (INH) and	Stability	Silica gel 60	Dichloromethane,	INH= 0.48±0.01	INH=	210
	Rifabutin (RFB) in	indicating	F254	acetone, methanol	$RFB = 0.84 \pm 0.01$	262 nm	
	pharmaceutical	HPTLC		(20:7:2, v/v/v)		RFB= 504 nm	
	formulation						
4	Isoniazid (INH),	HPTLC	Precoated	Ethyl acetate:	$INH = 0.47 \pm 0.01$	254 nm	211
	Pyridoxine hydrochloride		silica gel 60 G	methanol: acetone:	PYR=0.75±0.01		
	(PYR) and Rifampicin		F254	acetic acid (5.5: 2.0:	RIF= 0.27±0.01		
	(RIF) in combined		aluminium	2.0: 0.5, v/v/v/v)			

	tablet dosage form		sheet				
		Rifa	ampicin in combi	nation with other drugs			
1	Rifampicin (RIF) and	HPTLC	Silica gel 60	Chloroform: methanol	RIF= 0.27±0.01	RIF= 475 nm	212
	Isoniazid (INH) in rat		F254	(9:1, v/v)	INH= 0.47±0.01	INH= 280 nm	
	plasma						
		Pyra	zinamide in comb	oination with other drugs			
1	Pyrazinamide (PYN) and	HPTLC	Silica gel 60	Methylenechloride:	PYN= 0.86	275 nm	91
	its impurity Pyrazine-2-		F254	methanol: ammonia	PYA= 0.16		
	carboxylic acid (PYA)			solution (7:3:0.1,			
				v/v/v)			
2	Pyrazinamide (PYZ),	HPTLC	Silica gel 60	Acetate, acetone,	PYZ=0.74	277 nm	213
	Rifampicin (RIF) &		F254 plates	methanol, glacial	RIF=0.25,		
	Isoniazid (INH)in a fixed			acetic acid with the	INH=0.44		
	dosagecombination tablet			ratio of (18:5:5:2,			
	-			v/v/v/v)			
			Ter	izidone			
1	Terizidone in	HPTLC	Silica gel 60	Toluene: n-butanol	0.60±0.03	268 nm	214
	pharmaceutical dosage		F254	(9:1, v/v)			
	form						

4. Gas Chromatography:

TABLE 9: GAS CHROMATOGRAPHY

S. no.	Drug / Sample	Description	Ref. no.
		Isoniazid in combination with other drugs	
1	Isoniazid (INH) and	Capillary column gas chromatography after precolumn derivatization with	215
	Hydrazine (HZ) in	trifluoroacetylacetone (FAA). Phenylhydrazine (PHZ) when present together with INH and HZ	
	pharmaceutical	also separated completely from the column HP-5 (30 mm x 0.32 mm) connected with flame	
	preparations &	ionization detection (FID). The solvent was evaporated under nitrogen gas and re-dissolved in	
	blood	0.2 mL of methanol. The total run time was 7 min and nitrogen flow rate was 1mL/min. The	
		linear calibration ranges for INH and HZ were determined to be 2.5-25 µg/mL and 2.5-21.2	
		µg/mL respectively, the detection limits were obtained at 62.5 pg reaching to the detector.	

5. Micellar Electrokinetic Capillary Chromatography:

Table 10: MICELLAR ELECTROKINETIC CAPILLARY CHROMATOGRAPHY

S.	Drug / Sample	Method	Stationary	Mobile	Flow Rate	Detection	Ref.		
no.			Phase	phase	(ml/ min)		no.		
	Isoniazid in combination with other drugs								
1	Isoniazid	MEKC	Nova-Pak C18	Methanol in 20mM	1	254 nm	216		
	(INH), Pyrazinamide		(150 mm x 3.9	phosphate buffer &					
	(PYR) and Rifampicin		mm, 4 μm)	methanol in gradient					
	(RIF) in pharmaceutical		•••	elution program					
	products			1 0					

6. Electrochemical Methods:

Table 11: ELECTROCHEMICAL METHODS

S.	Drug/	Method	Electr	ode	Linearity	LOD	Ref.
no.	Sample		Working Electrode	Reference Electrode	Range		no.
			Isoniazid				
1	Isoniazid	Voltammetry	Mercury	Ag/AgCl/ KCl	5-500 nM	4.1 nM	217
		(Differential Pulse	film silver-based				
		Voltammetry)	electrode (Hg (Ag) FE)				
2	Isoniazid in urine	Amperometry	Glassy carbon electrode	Ag/AgCl/ KCl	0.05-783.1	0.01 µM	218
					μΜ		
3	Isoniazid	Voltammetry	Crystalline	Ag/AgCl/3M NaCl	0.05-2 μM	0.014 µM	219
		(Using poly (3,4-	Au (111)				
		ethylenedioxythioph					
		ene)-modified gold					
		electrode)					
4	Isoniazid in tablets	Amperometric	Glassy carbon electrode	Ag/AgCl	2.5 x 10 ⁻⁸ -	4.1 x	220
					1.0 x 10 ⁻³ M	10 ⁻⁹ M	
		Ison	iazid in combination with	other drugs			
5	Isoniazid (INH) and	Voltammetry	Hanging mercury drop	Ag/AgCl/	INH= 0.25-	INH=	221

	Rifampicin (RIF) in	(Differential Pulse	electrode (HMDE)	KCl	1.25 mg/L	0.05 mg/L	
	pharmaceutical	Voltammetry)			RIF = 0.40-	RIF=	
	formulations				2.00 mg/L	0.07 mg/L	
6	Isoniazid (INH) &	Voltammetry	Bismuth oxide modified	Ag/AgCl	INH= 5-	INH=	222
	Acetaminophen		screen-		1760 μM	1.85 µM	
	(AAP) in human		printed electrode		AAP= 0.5-	AAP=	
	fluids				1250 μM	30 nM	
			Pyrazinamide				
1	Pyrazinamide	Voltammetry	Screen-printed	Ag/AgCl	9.0 x 10 ⁻⁷ -	5.7 x 10 ⁻⁷	223
	-		carbon electrode		$1.0 \ge 10^{-4}$	mol/L	
			(SPCE)		mol /L		
			Ethionamide				
1	Ethionamide in	Voltammetry	Boron-doped diamond	Ag/AgCl	1.00-80.0	0.294	224
	Pharmaceutical	,	electrode	00	µmol/ L	µmol/L	
	Formulations				·		
		Ethio	namide in combination with	other drugs			
2	Ethionamide (ETH)	Voltammetry	Glassy carbon electrode	Ag/AgCl	ETH=	ETH=	225
	and Pyrazinamide		, ·	0 0	2.38-248.0	0.531	
	(PYZ)				umol /L	umol /L	
	(112)				PY7=	PYZ=	
					0 476-51 2	0.113	
					umol/I	umol /I	
			Cyclosorino		μποι/Ε	µmor/L	
1	D Cycloserine in	Voltammatry	Gold alactroda	$\Delta \alpha / \Delta \alpha C 1 /$	0111µM	3.3×10^{-8}	226
1	pharmacautical and	v oltainineti y	Gold electrode	KCI	0.1-1.1 μινι	5.5 X 10 M	220
	human biological			KCI		111	
	samples						
2	D Cycloserine in	Voltammetry	Granhana nasta	$\Lambda \alpha / \Lambda \alpha C1$	SCV-	SCV-	227
2	pharmacautical	(Stair Case	alastroda	Ag/AgCI	1.0×10^{-8}	280 mM	221
	phannaceutical	(Stall Case	electione		1.0×10^{-7} M	2.80 IIIVI	
	products	(SCV) and Square			1.3×10 M	SWV =	
		wave (SwV)			$5 \le v \le 10^{-8}$	5.70 nM	
					1.0×10 ⁻⁷ -		
					$1.1 \times 10^{-1} M$		

7. Titrimetric Methods:

TABLE 11: TITRIMETRIC METHODS

S. no.	Drug / Sample	Description	Ref. no.
		Isoniazid	
1	Isoniazid	N-bromophthalimide used as a titrant. The end-point is determined either directly using	70
		methyl red or amaranth as indicator, or by a back-titration method in which a known	
		excess of N-bromophthalimide solution is added to isoniazid solution and then the residual	
		unreacted reagent is determined iodometrically.	
2	Isoniazid	Titration of isoniazid with 0.02 M acetous perchloric acid in glacial acetic acid using	228
		crystal violet as an indicator. The method is applicable over the range of 1.5-15 mg	
		isoniazid	
		Ethambutol	
1	Ethambutol	0.2 gm of pure powder or 0.2 gm equivalent of ethambutol hydrochloride powder (in case	229
		of tablet) was taken in a 250 ml separating flask and 10 ml of 2N sodium hydroxide was	
		added to the powder and was shaken thoroughly. The solution was titrated with 0.1 N	
		perchloric acid solution using 0.5 ml of 0.1% methyl red indicator (end point pink violet).	
		Ethionamide	
1	Ethionamide in	A 10 mL aliquot of standard Ethionamide solution containing 1.5-15 mg of Ethionamide	98
	pharmaceuticals	was measured accurately and transferred into a 100 mL titration flask, 5 mL of 2M H2SO4	
		was added and titrated immediately against 0.01M KMnO4 to a first appearance of pink	
		color.	
2	Ethionamide in	A 10 mL aliquot of the pure Ethionamide solution containing	98
	pharmaceuticals	2-10 mg of drug was placed in a 100 mL titration flask. 25 mL of saturated sodium	
		bicarbonate was added followed by 1 mL starch indicator. The content was titrated with	
		standard iodine solution to a blue end point.	
3	Ethionamide in	A 10 mL aliquot of the drug solution containing 2-9 mg of Ethionamide was measured	98
	pharmaceuticals	accurately and transferred into a 100 mL titration flask followed by the addition of 5 mL	
		of 2M HCl. Two drops of methyl orange indicator were added and content titrated vs 5	
		mM bromate-bromide mixture to a colorless end point.	

8. Other Methods: A. Liquid Chromatography/Mass Spectrometry Methods:

TABLE 12: LIQUID CHROMATOGRAPHY/MASS SPECTROMETRY METHODS

S.	Drug / Sample	Method	Stationary Phase	Mobile phase	Flow Rate	Detection/ m/z	Ref.
110.			Ţ	soniazid	(1111/11111)		110.
1	Isoniazid in dog	LC-MS	C18	0.1% formic	1	Mass spectrometric	230
1	plasma	LC WIS	010	acid:acetonitrile (91:9, v/v)	1	138	230
2	Isoniazid levels in small hair samples	LC/MS- MS	Phenomenex Synergi Polar-RP (100 mm	Water with 0.2% (v/v) formic acid	0.4	Mass spectrometric 79.0	231
3	Isoniazid	SFC- MS/MS	x 2.1 mm, 2.5 µm) Inertsil ODS C18 (150 mm x 4.6 mm, 5 µm)	Dichloromethane: methanol: ethyl acetate: formic acid(70:30:0.5:0.1, v/v/v/v) (15%) and supercritical CO ₂ (85%)	-	Mass spectrometric138	232
			Isoniazid in comb	ination with other drugs			
4	Isoniazid (INH)	LC/MS-	Kromasil C18 (150	0.1% formic acid in water	0.8	Mass spectrometric	233
	and Ethambutol (EMB) in dried blood spots	MS	mm x 4.6 mm, 5 µm)	and methanol (35:65, v/v)		INH 138.10 →121.10 EMB 205.20 → 116.10	
5	Isoniazid (INH) and Ethambutol (EMB) in human plasma	LC/MS- MS	Atlantis Waters C18 (150 mm x 2.1 mm, 3 μm)	Methanol: water: formicacid (10:90:0.3, v/v/v)	0.20	Mass spectrometric INH= $205 \rightarrow 116$ EMB= $130 \rightarrow 60$	234
			Ri	fampicin			
1	Rifampicin in human plasma	LC/MS- MS	Kinetex C18 (50 mm x 2.1 mm, 2.6	0.1% formic acid in water and acetonitrile in gradient elution program	0.5-0.9	Mas spectrometric $823.4 \rightarrow 107.1$ and $823.4 \rightarrow 163.1$	235
2	Rifampicin in human plasma and cerebrospinal fluid	LC/MS- MS	Hypersil–Hypurity C18 (150 mm x 2.1 mm, 5 μm)	ACN containing formic acid (0.05%, v/v) and 15 mMammonium formate buffer (pH 5) in gradient	0.35	Mass spectrometric $823.4 \rightarrow 791.4$	236
3	Rifampicin in plasma	LC/MS- MS	BDS Hypersil Gold C18 (50 mm x 3 mm)	elution program Methanol: 2 mM ammonium acetate (80:20 v/v)	0.2	Mass spectrometric	237
4	Rifampicin (RIF) in rat plasma	UPLC- MS/MS	BEH C18 (50 mm x 2.1 mm, 1.7 μm)	Acetonitrile and water (both containing 0.1 % formic acid) in gradient elution program	0.7	Mass spectrometric 823.8	238
			Et	hambutol			
1	Ethambutol in human plasma	UFLC-MS	Phenomenex Gemini C18 (50 mm x 2.0 mm, 5 µm)	Acetonitrile: water (pH 2.4 adjusted with 0.5% formic acid) (80:20, v/v)	1.5	Mass spectrometric 205	239
2	Ethambutol in its dosage form and human urine	SFC- MS/MS	Inertsil ODS-C18 (100 mm x 4.6 mm, 5 µm)	Dichloromethane: methanol: formic acid (70:30:0.1, v/v/v) and supercritical CO ₂	0.3 & 2	Mass spectrometric 205.1	240
			Ethambutol in com	bination with other drugs			
3	Ethambutol and Pyrazinamide in human plasma	LC- MS/MS	Chromolith SpeedROD RP-18e (50 mm x4.6 mm, 2 µm)	0.1% trifluoroacetic acid in water and 0.1% trifluoroacetic acid in methanol in gradient elution program	-	Mass spectrometric	241
		1.0	Pyr	azinamide	0.1		0.10
1	Pyrazinamide in human plasma	LC- MS/MS	Hypersil, Gold (50 mm x 4.6 mm, 5	Methanol: 0.1 % Formic Acid in 10 mM	0.4	Mass spectrometric $124.100 \rightarrow 79.160$	242

				formate (90:10, v/v)			
			Pyrazinamide in co	mbination with other drugs			
2	Pyrazinamide & Isoniazid in its dosage	SFC- MS/MS	Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm)	Dichloromethane: methanol: formic acid (50:50:0.1, v/v/v).	0.3 & 2	Mass spectrometric PYZ= 130 → 60	243
2	Duraginamida (DV7)	LC	Waters C19	Supercritical carbon dioxide (SC-CO ₂)	0.5	INH= $160 \rightarrow 100$	244
3	Isoniazid (INH) and Ethambutol (EMB) in serum	MS/MS	analytical (100 mm x 2.0 mm, 3 µm)	200 mM ammonium acetate buffer pH 5.0 in gradient elution program	0.5	Mass spectrometric PYZ= $81 \rightarrow 124$ INH= $121 \rightarrow 138.1$ ETB = $116.1 \rightarrow 205.1$	244
4	Pyrazinamide (PYZ), Rifampicin (RIF), Isoniazid (INH), Acetyl Isoniazid (AcINH) & Ethambutol (EMB) in Human Plasma	LC- MS/MS	Gemini C18 (150 mm x 4.6 mm; 4.6 μm)	Methanol: 5 mM ammonium acetate pH 3.5 in gradient elution program	0.6	Mass spectrometric PZA: 124 / 81 RIF: 823.46 / 791.49 INH: 138.00 / 121.00 AcINH: 180 / 121 EMB: 205.16 / 116.13	245
			Rifabutin in com	bination with other drugs			
1	Rifabutin and 25-O- deacetyl Rifabutin in human plasma	LC- MS/MS	Rp (30 mm x 2.1 mm, 3 μm)	Methanol: water: acetic acid in gradient elution	-	Mass spectrometric For Rifabutin $847.5 \rightarrow 815.7$ For 25-O-Deacetyl Rifabutin $805.7 \rightarrow$ 773.7	246
2	Rifabutin (RBT) & Lopinavir (LPV) in human plasma	LC- MS/MS	HS C18 (50 mm x 4.6 mm, 5 μm)	85% acetonitrile in ammonium acetate buffer (10mM, pH 4.5)	0.7	Mass spectrometric RBT= $847.7 \rightarrow 815.4$ LPV= $629.6 \rightarrow 447.4$	247
			Ri	ifapentine			
1	Rifapentine in dried blood spot sample	LC- MS/MS	BEH C8 (50 mm x 2.1 mm, 1.7 μm)	5Mm ammonium formate in water and 3% DMSO in acetonitrile in gradient elution program	-	Mass spectrometric 877.6 → 845.5	248
			C	vcloserine			
1	Cycloserine in blood plasma	HPLC/MS	Acclaim C18 (150 mm x 2.1 mm, 3 μm)	Formic acid (0.1%) and MeCN (55:45, v/v)	0.3	Mass spectrometric	249
2	Cycloserine in healthy rat blood and lung tissues	HPLC- MS/MS	C18 (150 mm x 4.6 mm, 5 μm)	Acetonitrile containing 2mM ammonium formate and 0.1% aqueous formic acid (35:65, v/v)	0.001	Mass spectrometric	250
3	Cycloserine in 50µL of human plasma	LC- MS/MS	C18	Acetonitrile & 0.5% formic acid buffer (60:40, v/v)	0.8	Mass spectrometric	251
4	Cycloserine in human plasma	LC- MS/MS	Shim-pack XR- ODS (100 mm x2.0 mm, 2.2 μm)	Methanol & 0.01% formic acid (70:30, v/v)	-	Mass spectrometric	252
			p-Amir	nosalicylic Acid			
1	p-Aminosalicylic acid	LC- MS/MS	Phenomenex Synergi Hydro-RP (150 mm x 2.0 mm, 4µm)	Methanol: 0.2% Formic acid (40:60, v/v)	0.3	Mass spectrometric $80.2 \rightarrow 136.2$	253
			Be	edaquiline			
1	Bedaquiline in human serum	LC- MS/MS	HyPURITY C18 (50 mm x 2.1 mm, 3μm)	Purified water, acetonitrile, and an aqueous buffer (containing ammonium acetate [10g/liter], acetic acid [35mg/liter] and	0.5	Mass spectrometric 555.1 → 58.4	254

				trifluoroacetic			
				anhydride			
				[2ml/liter] in water) in			
2	Dadaquilina in human		A ciloret ZODD A V	gradient elution program	0.2	Mass anastromatria	255
2	plasma	MS/MS	SB 18 (100 mm x	ammonium	0.5	$555.2 \rightarrow 58.3$	233
	piasilia	1015/1015	21 mm 35 um	formate(containing 0.1%		$555.2 \rightarrow 56.5$	
			2.1 mm, 5.5 µm)	formic acid solution)			
				(85:15, v/v)			
3	Bedaquiline in hair	LC-	Phenomenex	Water with 1% formic	0.3	Mass	256
	1	MS/MS	Synergi Polar RP	acid &		spectrometric	
			(100 mm x 2.1 mm,	acetonitrile with 0.4%		$557.1 \rightarrow 58.1$	
			2.5 μm)	formic acid in gradient			
				elution program			
- 1	D 1 11	1.0		elamanid	0.0		
1	Delamanid in mouse	LC-	Capcell Pak C18	Purified water-formic acid	0.2	Mass spectrometric	257
	piasma	INIS/INIS	MG(50 mm x 2.0 mm 3 mm)	(1000:2, V/V) and methanol formic acid		$555 \rightarrow 552$	
			iiiii, 5 μiii)	(1000:2 y/y) in gradient			
				elution program			
2	Delamanid in human	UHPLC-	Acquity waters	A) Ammonium	0.5	Mass spectrometric	258
	plasma	MS/MS	BEH C18 (50 mm x	bicarbonate and		$535.1 \rightarrow 352.2$	
	-		2.1 mm, 1.7 μm)	ammonium hydroxide in			
				water			
				B) Ammonium hydroxide			
				in methanol			
				- Use solution A & B in			
			D.,	gradient elution program			
1		LC			- -		250
	$\mathbf{Protoman1d}$ ($\mathbf{PA} = \mathbf{X}^{2}/1$)		An Inerteil ())S		0.5	Mace	/50
1	Pretomanid (PA-824), Moxifloxacin (MOX)	LC- MS/MS	An Inertsil ODS C18 (150 mm x	triethylamine in water	0.5	Mass spectrometricPA-	259
1	Moxifloxacin (MOX) and Pyrazinamide	MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 µm)	triethylamine in water (85:15, v/v)	0.5	Mass spectrometricPA- 824=	259
1	Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma	MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm)	triethylamine in water (85:15, v/v)	0.5	Mass spectrometricPA- 824= 360.1→175.0	259
1	Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma	LC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm)	triethylamine in water (85:15, v/v)	0.5	Mass spectrometricPA- 824= 360.1→175.0 MOX=	259
1	Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma	MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm)	triethylamine in water (85:15, v/v)	0.5	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0	259
1	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma	LC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm)	triethylamine in water (85:15, v/v)	0.5	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2	259
1	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma	LC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li	ine Anti-TB	0.5	Mass spectrometricPA- 824= $360.1 \rightarrow 175.0$ MOX= $402.1 \rightarrow 260.0$ PYZ= 81.2	259
1	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma	HPLC- MSAG	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18	ine Anti-TB Methanol in 0.3% formic	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric	259
1	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid,	HPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18	ine Anti-TB Methanol in 0.3% formic acid and water in gradient	0.5	Mass spectrometricPA- 824= $360.1 \rightarrow 175.0$ MOX= $402.1 \rightarrow 260.0$ PYZ= 81.2 Mass spectrometric	259
	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide	HPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 µm) 1 st Li C18	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program	-	Mass spectrometricPA- 824= $360.1 \rightarrow 175.0$ MOX= $402.1 \rightarrow 260.0$ PYZ= 81.2 Mass spectrometric	260
1 1 2	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin Isoniazid	HPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2 1	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile +	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric	259 260 261
	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol	HPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm)	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric	259 260 261
1 	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol	HPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm)	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric	259 260 261
1 1 2	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol	HPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm)	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution program	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric	259 260 261
1 2 3	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide,	HPLC- MS/MS UPLC- MS/MS UPLC-	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm) Waters HSS T3	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution program	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric	259 260 261 262
1 2 3	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid,	HPLC- MS/MS UPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm) Waters HSS T3 (150 mm x 2.1 mm,	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution program	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric	259 260 261 262
1 2 3	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol	HPLC- MS/MS UPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm) Waters HSS T3 (150 mm x 2.1 mm, 1.8 μm)	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution program	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric	259 260 261 262
1 2 3	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol in human plasma & BBMC	HPLC- MS/MS UPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm) Waters HSS T3 (150 mm x 2.1 mm, 1.8 μm)	Methanol & 0.03% triethylamine in water (85:15, v/v) ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution program	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric	259 260 261 262
1 2 3	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol in human plasma & PBMCs	HPLC- MS/MS UPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm) Waters HSS T3 (150 mm x 2.1 mm, 1.8 μm)	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution program	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric	259 260 261 262
1 1 2 3	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol in human plasma & PBMCs	HPLC- MS/MS UPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm) Waters HSS T3 (150 mm x 2.1 mm, 1.8 μm) 2 nd L Waters HSS T3	ine Anti-TB Mathematical Mathematical Mathe	-	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric Mass spectrometric	259 260 261 262
1 1 2 3	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol in human plasma & PBMCs Nine second-line anti- tuberculosis	LC- MS/MS HPLC- MS/MS UPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm) Waters HSS T3 (150 mm x 2.1 mm, 1.8 μm) 2 nd L Waters HSS T3 column (50.0 mm x	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution program - ine Anti-TB 10 mM ammonium formate in 0.1% formic		Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric Mass spectrometric	259 260 261 262 263
1 1 2 3	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol in human plasma & PBMCs Nine second-line anti- tuberculosis drugs	LC- MS/MS HPLC- MS/MS UPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm) Waters HSS T3 (150 mm x 2.1 mm, 1.8 μm) 2 nd L Waters HSS T3 column (50.0 mm x 2.1 mm, 1.8 μm)	ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution program - ine Anti-TB 10 mM ammonium formate in 0.1% formic acid and acetonitrile in	0.5	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric Mass spectrometric	259 260 261 262 263
1 1 2 3	Pretomanid (PA-824), Moxifloxacin (MOX) and Pyrazinamide (PYZ) in rat plasma Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol Pyrazinamide, Rifampicin, Isoniazid, & Ethambutol in human plasma & PBMCs Nine second-line anti- tuberculosis drugs	LC- MS/MS HPLC- MS/MS UPLC- MS/MS UPLC- MS/MS	An Inertsil ODS C18 (150 mm x 4.6 mm, 5 μm) 1 st Li C18 Acquity UPLC HSS T3 (150 mm x 2.1 mm, 1.8 μm) Waters HSS T3 (150 mm x 2.1 mm, 1.8 μm) 2 nd L Waters HSS T3 column (50.0 mm x 2.1 mm, 1.8 μm)	Methanol & 0.03% triethylamine in water (85:15, v/v) ine Anti-TB Methanol in 0.3% formic acid and water in gradient elution program Water + 0.05% of formic acid and Acetonitrile + 0.05% of formic acid in gradient elution program - ine Anti-TB 10 mM ammonium formate in 0.1% formic acid and acetonitrile in 0.1% formic acid in	0.5	Mass spectrometricPA- 824= 360.1→175.0 MOX= 402.1→260.0 PYZ= 81.2 Mass spectrometric Mass spectrometric Mass spectrometric	259 260 261 262 263

B. Capillary Electrophoresis:

TABLE 13: CAPILLARY ELECTROPHORESIS

S. no.	Drug /Sample	Description	Ref. No.
		Isoniazid	
1	Isoniazid (INH)	Capillary electrophoresis method coupled with chemiluminescent (CL) detection was proposed	264
		for the analysis of isoniazid based on the enhancement effect of INH to CL emission of	
		luminol-periodate potassium reaction. Under the optimal conditions, INH can be assayed in the	
		range of 7.0×10^{-7} to 3.0×10^{-5} g/mL (R (2) = 0.9990) with a limit of detection of 3.0×10^{-7}	

		g/mL (signal-to-noise ratio of 3). The whole analysis process can be completed within 2.5 min					
		with a theoretical plate number of 6258.					
	Ethambutol						
1	Ethambutol	CE with capacitively coupled contactless conductivity detection. The separation of EMB and	265				
	(EMB)	its main product of degradation were achieved in less than 3 min with a resolution of 2.0.					
		Using the best separation conditions, linearity of 0.9976 (R ² , five data points), the sensitivity of					
		1.26x10 ⁻⁴ V min µmol/L, and LOD and quantification of 23.5 and 78.3 µmol/L, respectively,					
		were obtained.					
		Rifabutin					
1	Rifabutin and	Capillary zone electrophoresis (CZE) was used for simultaneous determination of rifabutin and	266				
	human serum	human serum albumin. CE conditions: a quartz capillary tube (internal diameter 75mm,					
	albumin in	effective length 50cm, total length 60cm), the capillary temperature was 25°C, the voltage					
	pharmaceutical	applied to the capillary tube was +20kV, the UV detection wavelength was 214nm,					
	formulations	hydrodynamic injection of the sample was performed at 30mbar for 5s, tetraborate buffer					
		solution (0.01M, pH9.2). The obtained results are characterized by high efficiency (number of					
		theoretical plates up to 260,000) and sufficient sensitivity (LOQ starting from 0.02µg/ml for					
		RFB).					
		p-Aminosalicylic Acid					
1	p-Aminosalicylic	A capillary zone electrophoresis method has been developed for the determination of p-amino	267				
	acid and its N-	salicylic acid (PAS) and its metabolite, N-acetyl-p-aminosalicylic acid (N-acetyl-PAS), in					
	acetylated	urine. A good separation of the analytes is achieved in a run time of 12 min (15 min total,					
	metabolite in	including capillary wash). A linear relationship was observed between time-normalized peak					
	human urine	area and the concentration of the parent and metabolite with correlation coefficients greater					
		than 0.9990.					

C. Flow Injection Analysis:

TABLE 14: FLOW INJECTION ANALYSIS

S. no.	Drug /Sample	Description	Ref. No.		
Ethambutol					
1	Ethambutol in	FIA using a graphite-polyurethane composite electrode as an amperometric detector. In order	268		
	synthetic	to characterise the electrochemical behaviour of ethambutol at pH = 8.0 voltammetric studies			
	urine	were performed. The detector was assembled in a flow injection apparatus and operated at +1.2			
		V (vs. Ag/AgCl (NaCl sat.)). The linear response for the method was extended up to a 1.1			
		mmol L^{-1} ethambutol solution with a detection limit of 0.0634 mmol L^{-1} . The reproducibility of			
		current responses for injections of 0.7 mmol L ⁻¹ ethambutol solution was evaluated to be 5.1%			
		(n = 30) and the analytical frequency was 161 determinations h ⁻¹ .			
p-Aminosalicylic Acid					
1	p-Aminosalicylic	FIA with spectrophotometric detection (λ 510 nm). The best conditions were attained using a	269		
	acid derivatives	mixture of ethanol (methanol) and a buffer solution of pH 6.68 (30: 70 vol %). The analytical			
		range for the analytes was $0.08-5.0 \mu\text{g/ml}$.			

D. Chemiluminescence Method:

TABLE 15: CHEMILUMINESCENCE METHOD

S. no.	Drug /Sample	Description	Ref. No.
		Rifampicin	
1	Rifampicin	Rifampicin can enhance the chemiluminescence (CL) of peroxomonosulfate-cobalt (II) system,	270
		and the CL intensity is strongly dependent on the rifampicin concentrations. Based on this	
		phenomenon, a rapid and sensitive flow injection CL method was developed for the	
		determination of rifampicin. The relative CL intensity was linear with the rifampicin	
		concentration over the range of 5×10 to 1×10 g/mL (r=0.9991), the detection limit was 7×10	
		g/mL (S/N=3), and the relative standard deviation was 2.7% for 6×10 g/mL rifampicin (n=11).	

CONCLUSION: From all information given in the analytical review, it can be concluded that various UV-Visible spectrophotometric, Spectrofluorimetric, High-performance liquid chromatography (HPLC), High-performance thin layer chromatography (HPTLC), Gas chromatography (GC), Micellar electro-kinetic capillary chromatography, Electrochemical, Titrimetric, Liquid chromatography / Mass spectrometry (LC/MS), Capillary electro-

phoresis, Flow injection analysis, and Chemiluminescence were used for the determination of the first line, oral second line and newer anti-TB drugs alone and in combination. These methods have been successfully used on a routine basis and allow the quantification of the drugs in raw materials, pharmaceutical formulations, and biological matrices in a short analytical time. These all methods are sensitive, simple, fast, accurate, and reproducible, as well as possess excellent linearity & precision characteristic. These observations make it possible to anticipate the use of these methods in future analytical research work for Anti-TB drugs.

ACKNOWLEDGEMENT: Nil

CONFLICTS OF INTEREST: Nil

REFERENCES:

- Kasper D, Fauci A, Hauser S, Longo D, Jameson L and Loscalzo J: Tuberculosis. Harrison's Principles of Internal Medicine. McGraw-Hill Education, New York, Edition 19, 2015: 1102-22.
- Tripathi KD: Antitubercular Drugs. Essential of Medical Pharmacology. Jaypee Brothers Medical Publishers Ltd, New Delhi, Edition 6, 2008: 765-79.
- Shanbhag TV and Shenoy S: Antitubercular Drugs. Pharmacology for Medical Graduates. RELX India Private Limited (Formerly reed Elsevier India Private Limited), New Delhi, Edition 3, 2016: 452-60.
- Tuberculosis. (n.d). Retrieved March 2020, from https://www.who.int/news-room/factsheets/detail/tuberculosis
- Maryadele J, O'Neil. Patricia E, Heckelman and Koch CB: Isoniazid: The Merck Index an Encyclopedia of Chemicals, Drugs, and Biologicals. Merck Research Laboratories, Merck & Co. Inc Whitehouse Station NJ, USA, Edition 14, 2006: 898.
- Isoniazid- Drug profile, Retrieved March 2020, fromhttps://pubchem.ncbi.nlm.nih.gov/compound/isoniazi d
- Maryadele J, O'Neil. Patricia E, Heckelman and Koch CB: Rifampicin. The Merck Index an Encyclopedia of Chemicals, Drugs, and Biologicals. Merck Research Laboratories, Merck & Co. Inc Whitehouse Station NJ, USA, Edition 14, 2006: 1417.
- Rifampicin- Drug profile, Retrieved March 2020, fromhttps://pubchem.ncbi.nlm.nih.gov/compound/Rifampi cin
- Maryadele J, O'Neil. Patricia E, Heckelman and Koch CB: Ethambutol. The Merck Index an Encyclopedia of Chemicals, Drugs, and Biologicals. Merck Research Laboratories, Merck & Co. Inc Whitehouse Station NJ, USA, Edition 14, 2006: 638.
- 10. Ethambutol- Drug profile, Retrieved March 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/ethambutol
- Maryadele J, O'Neil. Patricia E, Heckelman and Koch CB: Pyrazinamide. The Merck Index an Encyclopedia of Chemicals, Drugs, and Biologicals. Merck Research Laboratories, Merck & Co. Inc Whitehouse Station NJ, USA, Edition 14, 2006: 1368.
- 12. Pyrazinamide- Drug profile, Retrieved March 2020, fromhttps://pubchem.ncbi.nlm.nih.gov/compound/pyrazina mide
- Maryadele J, O'Neil. Patricia E, Heckelman and Koch CB: Rifabutin. The Merck Index an Encyclopedia of Chemicals, Drugs, and Biologicals. Merck Research Laboratories, Merck & Co. Inc Whitehouse Station NJ, USA, Edition 14, 2006:1416.
- 14. Rifabutin- Drug profile, Retrieved March 2020, from https://www.chemicalbook.com/ChemicalProductProperty _US_CB0702764.aspx

- Maryadele J, O'Neil. Patricia E, Heckelman and Koch CB: Rifapentine. The Merck Index an Encyclopedia of Chemicals, Drugs, and Biologicals. Merck Research Laboratories, Merck & Co. Inc Whitehouse Station NJ, USA, Edition 14, 2006: 1418.
- 16. Rifapentine- Drug profile, Retrieved March 2020, fromhttps://pubchem.ncbi.nlm.nih.gov/compound/rifapenti ne
- Maryadele J, O'Neil. Patricia E, Heckelman and Koch CB: Ethionamide: The Merck Index an Encyclopedia of Chemicals, Drugs, and Biologicals. 14th edition. USA; Merck Research Laboratories, Merck & Co. Inc Whitehouse Station NJ: 2006, 641.
- Ethionamide- Drug profile, Retrieved March 2020, fromhttps://pubchem.ncbi.nlm.nih.gov/compound/ethiona mide
- Ethionamide- Drug profile, Retrieved March 2020, from https://pharmaffiliates.com/ethionamide/ethionamide-apiimpurity/1668
- Maryadele J, O'Neil. Patricia E, Heckelman and Koch CB: Cycloserine. The Merck Index an Encyclopedia of Chemicals, Drugs, and Biologicals. Merck Research Laboratories, Merck & Co. Inc Whitehouse Station NJ, USA, Edition 14, 2006: 461.
- 21. Cycloserine- Drug profile, Retrieved March 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/cycloserine
- 22. Terizidone-Drug profile, Retrieved March 2019, from https://www.hoelzel-biotech.com/en/toronto-research-chemicals-molecule-other-trc-t115500-500mg-terizidone.html
- 23. Terizidone-Drug profile, Retrieved March 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/Terizidone
- 24. Maryadele J, O'Neil. Patricia E, Heckelman and Koch CB: P-Aminosalicylic Acid. The Merck Index an Encyclopedia of Chemicals, Drugs, and Biologicals. Merck Research Laboratories, Merck & Co. Inc Whitehouse Station NJ, USA, Edition 14, 2006: 80.
- p-Aminosalicylic Acid- Drug profile, Retrieved March 2020, from https://pubchem.ncbi.nlm.nih.gov/Compound /4-Aminosalicylic_acid
- 26. Bedaquiline-Drug profile, Retrieved March 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/Bedaquiline
- 27. Delamanid-Drug profile, Retrieved March 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/Delamanid
- 28. Pretomanid-Drug profile, Retrieved March 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/pa-824
- 29. Indian Pharmacopoeia. The government of India, Ministry of Health and Family Welfare, Indian Pharmacopoeia Commission, Ghaziabad, Edition 8, Vol. II, 2018: 1725-27.
- USP 36 NF 31 United States Pharmacopoeia-National Formulary. The United State Fl Convection, Twinbrook Parkway, Rockville, MD, Vol. II, 2013: 3506.
- British pharmacopoeia. The Department of Health, Social Services and Public Safety, The stationary Office, London, Vol. II and III, 2016: 2053-2054, 3618-19.
- 32. British pharmacopoeia. The Department of Health, Social Services and Public Safety, The stationary Office, London, Vol. II and III, 2016: 2007, 3602-03.
- 33. European Pharmacopoeia. Council of Europe, Strasbourg, France, Edition 6, Vol. II, 2008: 2826.
- 34. Indian Pharmacopoeia. The government of India, Ministry of Health and Family Welfare, Indian Pharmacopoeia Commission, Ghaziabad, Edition 8, Vol. II, 2018: 2321-22.
- 35. Indian Pharmacopoeia. The government of India, Ministry of Health and Family Welfare, Indian Pharmacopoeia

Commission, Ghaziabad, Edition 8, Vol. II, 2018: 3113-25.

- Indian Pharmacopoeia. The government of India, Ministry of Health and Family Welfare, Indian Pharmacopoeia Commission, Ghaziabad, Ed 8, Vol. II, 2018: 1989-93.
- Indian Pharmacopoeia. The government of India, Ministry of Health and Family Welfare, Indian Pharmacopoeia Commission, Ghaziabad, Edition 8, Vol. II, 2018: 1999-2000.
- The Japanese Pharmacopoeia. Society of Japanese Pharmacopoeia, Shibuya, Shibuya-ku, Tokyo, Japan, Edition 15, 2006: 780-82.
- The Japanese Pharmacopoeia. Society of Japanese Pharmacopoeia, Shibuya, Shibuya-ku, Tokyo, Japan, Edition 15, 2006: 1064-66.
- USP 36 NF 31 United States Pharmacopoeia-National Formulary. The United State Pharmacopeial Convection, Twinbrook Parkway, Rockville, MD, Vol. II, 2013: 3987-89.
- 41. USP 36 NF 31 United States Pharmacopoeia-National Formulary. The United State Pharmacopeial Convection, Twinbrook Parkway, Rockville, MD, Vol. II, 2013: 5039-41.
- USP 36 NF 31 United States Pharmacopoeia-National Formulary. The United State Pharmacopeial Convection, Twinbrook Parkway, Rockville, MD, Vol. II, 2013: 5041-48.
- USP 36 NF 31 United States Pharmacopoeia-National Formulary. The United State Pharmacopeial Convection, Twinbrook Parkway, Rockville, MD, Vol. II, 2013: 4972-73.
- 44. USP 36 NF 31 United States Pharmacopoeia-National Formulary. The United State Pharmacopeial Convection, Twinbrook Parkway, Rockville, MD, Vol. II, 2013: 3498-00.
- USP 36 NF 31 United States Pharmacopoeia-National Formulary. The United State Pharmacopeial Convection, Twinbrook Parkway, Rockville, MD, Vol. II, 2013: 2456-2458.
- USP 36 NF 31 United States Pharmacopoeia-National Formulary. The United State Pharmacopeial Convection, Twinbrook Parkway, Rockville, MD, Vol. II, 2013: 3126-3127.
- British pharmacopoeia. The Department of Health, Social Services and Public Safety, The stationary Office, London, Vol. II, 2016: 2052-53.
- European Pharmacopoeia. Council of Europe, Strasbourg, France, Edition 6, Vol. II, 2008: 1842-43.
- Indian Pharmacopoeia. The government of India, Ministry of Health and Family Welfare, Indian Pharmacopoeia Commission, Ghaziabad, Edition 8, Vol. II, 2018: 3042-44.
- British pharmacopoeia. The Department of Health, Social Services and Public Safety, The stationary Office, London, Vol. I and III, 2016: 1277, 3265-66.
- 51. European Pharmacopoeia. Council of Europe, Strasbourg, France, Edition 6, Vol. II, 2008: 2180.
- 52. European Pharmacopoeia. Council of Europe, Strasbourg, France, Edition 6, Vol. II, 2008: 2791
- British pharmacopoeia. The Department of Health, Social Services and Public Safety, The stationary Office, London, Vol. I and III, 2016: 904, 3082.
- 54. European Pharmacopoeia. Council of Europe, Strasbourg, France, Edition 6, Vol. II, 2008: 3456-57.
- 55. British pharmacopoeia. The Department of Health, Social Services and Public Safety, The stationary Office, London, Vol. I, 2016: 914-15.

- European Pharmacopoeia. Council of Europe, Strasbourg, France, Edition 6, Vol. II, 2008: 1835-36.
- 57. The Japanese Pharmacopoeia. Society of Japanese Pharmacopoeia, Shibuya, Shibuya-ku, Tokyo, Japan, Edition 15, 2006: 1046-47.
- 58. The Japanese Pharmacopoeia. Society of Japanese Pharmacopoeia, Shibuya, Shibuya-ku, Tokyo, Japan, Edition 15, 2006: 637.
- 59. The Japanese Pharmacopoeia. Society of Japanese Pharmacopoeia, Shibuya, Shibuya-ku, Tokyo, Japan, Edition 15, 2006: 643-44.
- Nguyen Trung Dung: Determination of Isoniazid in Human Urine by Spectrophotometric Method. Tap chi Khoa hocva Cong nghe2015; 53(6): 780-88.
- Swamy N, Basavaiah K and Prashanth KN: Sensitive Spectrophotometric Assay of Isoniazid in Pharmaceuticals using Cerium (IV) and Two Acid Dyes. FABAD Journal of Pharmaceutical Sciences 2012; 37: 89-101.
- 62. Abbas MN and Homoda AMA: Spectrophotometric Determination of Isoniazid in Presence of Rifampicin in Some Pharmaceutical Preparations and Urine, Using Isatin as a reagent. Egyptian Journal of Chemistry 2003; 46(1): 57-69.
- Gowda BG, Melwanki MB, Seetharamappa J and Murthy KCS: Spectrophotometric Determination of Isoniazid in Pure and Pharmaceutical Formulations. Analytical Sciences 2002; 18: 839-41.
- 64. Swamy N, Prashanth KN and Basavaiah K: Redoxreaction based spectrophotometric assay of isoniazid in pharmaceuticals. International Scholarly Research Notices-Hindawi 2014; 1-11.
- 65. El-Kommos ME and Yanni AS: Spectrophotometric Determination of Isoniazid Using 6,7-dichloroquinoline-5,8-dione. The Analyst 1988; 113(7): 1091-95.
- 66. Almani KF, Laghari MGH, Memon AH, Rind FMA, Mughal UR, Maheshwari ML and Khuhawer MY: Spectrophotometric Determination of Isoniazid from Pharmaceutical Preparations Using Natural Aldehyde. Asian Journal of Chemistry 2013; 25(5): 2522-26.
- 67. Elhagi AM, Naji NARB, Bensaber SM and Almog TK: Microwaves Assistant Technique in Spectrophotometric Assay of Isoniazid Using It's Schiff's Base Derivatives. International Journal of Pharmaceutical Sciences and Research 2013; 4(2): 644-49.
- Vedhaiyan N, Suresh JA, Ramachandran R and Irulappan SK: Visible spectrophotometric estimation of isoniazid in bulk and pharmaceutical dosage form. International Journal of Pharmaceutical Sciences Review and Research 2014; 24(2): 50-52.
- 69. Oga EF: Spectrophotometric determination of isoniazid in pure and pharmaceutical formulations using vanillin. International Journal of Pharmacy and Pharmaceutical Sciences 2010; 2(1): 55-58.
- El-Brashy A and El-Ashry SM: Colorimetric and Titrimetric Assay of Isoniazid. Journal of Pharmaceutical and Biomedical Analysis 1992; 10(6): 421-26.
- 71. Kashyap R, Subrahmanyam EVS and Sharbaraya AR: Development and validation of new colorimetric method for the estimation of isoniazid in bulk and dosage form. International Journal of Pharmacy and Pharmaceutical Sciences 2012; 4(3): 688-95.
- 72. Pawar PY, Lagad AV, Bahir SN, Sumedha and Rathi R: Simultaneous UV spectrophotometric method for estimation of isoniazid and pyridoxine in tablet dosage form. Der Pharma Chemica 2012; 4(2): 749-54.
- 73. Nagaraja P, Sunitha K, Vasantha R and Yathirajan H: Novel method for the spectrophotometric determination of

isoniazid and ritodrine hydrochloride. Turkish Journal of Chemistry 2002; 26: 743-50.

- 74. Pandey G and Mishra B: A new analytical Q-Absorbance ratio method development and validation for simultaneous estimation of lamivudine and isoniazid. International Scholarly Research Notices-Hindawi 2013; 1-5.
- 75. Nasution LR, Bachri M and Putra EDL: Simultaneous estimation of isoniazid and pyridoxine hydrochloride in tablet dosage form by spectrophotometry ultraviolet with area under curve method. Asian Journal of Pharmaceutical and Clinical Research 2018; 11(5): 124-26.
- 76. Barsoum BN, Kamel MS and Diab MMA: Spectrophotometric determination of isoniazid and rifampicin from pharmaceutical preparations and biological fluids. Research Journal of Agriculture and Biological Sciences 2008; 4(5): 471-84.
- 77. Shah U and Jasani A: UV Spectrophotometric and RP-HPLC Methods for Simultaneous Estimation of Isoniazid, Rifampicin and Piperine in Pharmaceutical Dosage Form. International Journal of Pharmacy and Pharmaceutical Sciences 2014; 6(10): 274-80.
- Kamel MS, Barsoum N and Diab MMA: Spectrophotometric methods for microdetermination of some important antimicrobial drugs using iodine-starch and hydroquinone. World Journal of Chemistry 2008; 3(1): 1-10.
- 79. Swamy N, Basavaiah K and Vamsikrishna P: Stabilityindicating UV-spectrophotometric Assay of Rifampicin. Insight Pharmaceutical Sciences 2018; 8(1): 1-12.
- Shankar BR, Rajesh R and Ramya K: Method development and validation of rifampicin bulk and marketed capsule by simple uv spectrophotometric analysis. Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry 2016; 4(1): 8-13.
- 81. Khan MF, Rita SA, Kayser MS, Islam MS, Asad S, Bin Rashid R, Bari MA, Rahman MM, Al Aman DAA, Setu NI,Banoo R and Rashid MA: Theoretically guided analytical method development and validation for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometer. Frontiers in Chemistry 2017; 5(27): 1-12.
- Desai D: A review: validated analytical methods developed on antitubercular drug, rifampicin. Journal of Pharmaceutical Science and Bioscientific Research 2015; 5(3): 254-65.
- Begum SKA, Raju BD and Rao RN: Simultaneous estimation of rifampicin and isoniazid in combined dosage form by a simple UV spectrophotometric method. Der Pharmacia Lettre 2013; 5(3): 419-26.
- 84. Jenil CK and Patel SA: Second derivative spectrophotometric method for the estimation of rifampicin and piperine in their combined dosage form. International Research Journal of Pharmacy 2012; 3(4): 305-09.
- 85. Khamar JC and Patel SA: Dual wavelength spectrophotometric method for the simultaneous estimation of rifampicin and piperine in their combined capsule dosage form. American Journal of PharmTech Research 2012; 2(3): 653-62.
- 86. Khamar JC and Pate SA: Q-Absorbance ratio spectrophotometric method for the simultaneous estimation of rifampicin and piperine in their combined capsule dosage. Journal of Applied Pharmaceutical Science 2012; 2(4): 137-41.
- 87. Stets S, Tavares TM, Peralta-Zamora PG, Pessoab CA and Nagata N: Simultaneous determination of rifampicin and isoniazid in urine and pharmaceutical formulations by multivariate visible spectrophotometry. Journal of the Brazilian Chemical Society 2013; 24(7): 1198-1205.

- Sayanna, Jyothi M, Veeraiah T and Reddy CVR: Spectrophotometric determination of ethambutol in pure and pharmaceutical forms using triphenyl methane dyes. International Journal Pharmaceutical Science and Research 2016; 7(10): 4191-99.
- Shingbal DM and Naik SD: Colorimetric determination of ethambutol hydrochloride. Journal – Association of Official Analytical Chemists 1982; 65(4): 899-900.
- 90. Chenna GP, Shetty SK, Pai JB and Ahmed GBM: Development of spectrophotometric methods for the estimation of pyrazinamide in bulk and pharmaceutical formulations. International Journal of ChemTech Research 2011; 3(2): 737-41.
- 91. Habib NM, Ali NW, Abdelwhab NS and Abdelrahman MM: Different spectrophotometric and TLC-densitometric methods for determination of pyrazinamide in presence of its impurity. Bulletin of Faculty of Pharmacy, Cairo University 2017; 55(1): 185-94.
- 92. Muchlisyam, Pardede TR and Yohanna NCP: Validation of second derivative spectrophotometry method for determination of isoniazid, pyrazinamide and rifampicin in combined pharmaceutical doses form. Der Pharma Chemica 2016; 8(9): 9-17.
- 93. Kishore M, Jayaprakash M and Reddy TV: Development of new spectrophotometric methods for the quantitative determination of rifabutin in pharmaceutical formulations. International Journal of Pharma Research and Development-Online 2010; 2(10): 49-55.
- Jain P and Pathak VM: Development and validation of uvvisible spectrophotometric method for estimation of rifapentine in bulk and dosage form. Der Pharma Chemica 2013; 5(2): 251-55.
- 95. Amol CD and Prasad PD: Quantitative estimation of rifapentine using uv-spectrophotometry-area under curve technique in bulk and tablets. Analytical Chemistry: An Indian Journal 2013; 13(1): 36-39.
- 96. Debnath SK, Saisivam S and Debnath M: Validated UVspectrophotometric method for the ethionamide estimation in bulk, tablet and nanoparticles. International Journal of Drug Development and Research 2017; 9(1): 20-23.
- 97. Arsul VA, Kathar RP and Wagh SR: Analytical method development and validation of ethionamide by UV and RP-HPLC for routine analysis. Journal of Medical and Pharmaceutical Innovation 2016; 3(13): 21-27.
- 98. Titrimetric and Spectrophotometric Assay of Ethionamide. (n.d). Retrieved March 2020, from http://shodhganga. inflibnet.ac.in/bitstream/10603/225646/14/14_chapter%20 8.pdf
- 99. Qarah NAS, Basavaiah K and Abdulrahman SAM: Spectrophotometric determination of ethionamide in pharmaceuticals using folin–ciocalteu reagent and iron (III)-Ferricyanide as chromogenic agents. Journal of Taibah University for Science 2017; 11(5): 718-28.
- 100. Qarah N and Basavaiah K: Determination of ethionamide in pharmaceutical preparations by visible spectrophotometry employing two sulphonphthalein dyes. Journal of Chemical and Pharmaceutical Research 2016; 8(4): 1144-54.
- 101. Dudhe PB and Sonawane AM: Spectrophotometric determination of cycloserine in bulk and capsule dosage form by area under curve and first order derivative methods. International Journal of PharmTech Research 2016; 9(8): 131-39.
- 102. Wahbi AM, Mohamed ME, Abounassif M and Gadkariem E: Spectrophotometric method of determination for cycloserine using chlornil.Analytical Letters 1985; 18(3): 261-67.

- 103. Jain HK and Mane RR: Estimation of terizidone in bulk and capsule dosage form by area under curve and first order derivative spectrophotometry. International Journal of PharmTech Research 2016; 9(9): 457-64.
- 104. Laghari MGH, Darwis Y and Memon AH: New spectrophotometric methods for the determination of paminosalicylic acid in tablets. Tropical Journal of Pharmaceutical Research 2014; 13(7): 1133-39.
- 105. Pooja BS and Shetty ASK: Development and validation of UV spectrophotometric methods for the estimation of bedaquiline in bulk and pharmaceutical formulations. World Journal of Pharmaceutical Research 2018; 7(7): 1579-86.
- 106. Mohamed AMI, Mohamed FA, Atia NN and Botros SM: A novel spectrofluorimetric determination of four Anti-TB drugs in their pure and pharmaceutical dosage forms by quenching effect on the fluorescence of NBSphenothiazine product. Asian Journal of Biomedical and Pharmaceutical Sciences 2013; 3(26): 21-27.
- 107. Walash MI, El-Brashy AM, Metwally MES and Abdelal AA: Fluorimetric determination of carbocisteine and ethionamide in drug formulation. Acta Chimica Slovenica 2004; 51: 283-91.
- 108. Pemberton PW, Gagjee P, Chaloner C, Braganza JM and Lobley RW: Spectrofluorimetric Determination of Urinary p-Aminobenzoic and p-aminosalicylic acids in the BTPABA/ PAS Test of Pancreatic Function. Clinica Chimica Acta 1991; 199(3): 253-62.
- 109. Lianidu ES and Ioannou PC: Simple spectrofluorometric determination of paminobenzoic and p-aminosalicylic acids in biological fluids by use of terbium-sensitized luminescence. Clinical Chemistzy 1996; 42(10): 1659-65.
- 110. Jaikishin SPVD, Perwitasari DA, Darmawan E, Mulyani UA and Atthobar J: Validation of isoniazid for therapeutic drug monitoring in human plasma by high-performance liquid chromatography. AIP Conference Proceedings 2016; 1746: 1-5.
- 111. Bhandari R and Kaur IP: A sensitive HPLC method for determination of isoniazid in rat plasma, brain, liver and kidney. Journal of Chromatography and Separation Techniques 2012; 3(3):1-5.
- 112. Belhadj-Tahar H, Pertat N, Dutertre H and Dumontet M: Rapid, specific and sensitive method for isoniazid determination in serum. Journal of Chromatography B: Biomedical Applications 1996; 675(1): 113-17.
- 113. Yantih N, Hafilah S, Harahap Y, Sumaryono W and Setiabudy R: Partial validation of high performance liquid chromatography for analysis of isoniazid in rat plasma. Journal IlmuKefarmasian Indonesia 2018; 16(1): 67-71.
- 114. Bartzatt R: Detection and assay of antimycobacterial agent isoniazid utilizing isocratic high performance liquid chromatography. IOSR Journal of Pharmacy and Biological Sciences 2017; 12(5): 40-47.
- 115. Madhavi R, Krishna MA, Rani SG and Mounika D: Isoniazid: a review of analytical methods. Asian Journal of Pharmaceutical Analysis 2015; 5(1): 41-15.
- 116. Anusha A and Sreedev B: Simultaneous estimation of isoniazid and rifampicin in bulk and pharmaceutical formulations by RP-HPLC method. International Journal of Innovative Technology and Research 2014; 2(5): 1243-47.
- 117. Hakkimane SS and Guru BR: Nano formulation analysis: analytical method development of isoniazid and simultaneous estimation of antitubercular drugs isoniazid and rifampicin by reverse phase high pressure liquid chromatography. Asian Journal of Pharmaceutical and Clinical Research 2017; 10(5): 330-35.

- 118. Costin M, Cioroiu B, Agoroaei L and Butnaru E: Contribution to the development and validation of a high performance liquid chromatography by the UV detection method for isoniazid and omeprazole determination. Cellulose Chemistry and Technology 2012; 46(7-8): 511-16.
- 119. Milan-Segovia R, Perez-Flores G, Torres-Tirado JD, Hermosillo-Ramrrez X, Vigna-Perez M and Romano-Moreno S: Simultaneous HPLC determination of isoniazid and acetylisoniazid in plasma. Acta Chromatographica 2007; 19: 110-18.
- 120. Kumar AKH, Sudha V and Ramachandran G: Simple and rapid method for simultaneous determination of isoniazid and acetyl isoniazid in urine by HPLC. Asian Journal of Biomedical and Pharmaceutical Sciences 2014; 4(34): 46-50.
- 121. Bhandari BS, Chauhan A, Goyal AK and Mehta A: RP-HPLC method for simultaneous estimation of free and entrapped isoniazid and ciprofloxacin HCL in lipid polymer hybrid nanoparticles. American Journal of PharmTech Research 2015; 5(4): 255-73.
- 122. Ayyappan J, Umapathi P and Darlin S: Quine: development and validation of a stability indicating highperformance liquid chromatography (HPLC) method for the estimation of isoniazid and its related substances in fixed dose combination of isoniazid and ethambutol hydrochloride tablets. African Journal of Pharmacy and Pharmacology 2011; 5(12): 1513-21.
- 123. Jayaprakash D: Analytical method development and validation by RP-HPLC for simultaneous estimation of isoniazid and ethambutol in combined tablet dosage form. Journal of Pharmaceutical and Biomedical Analysis Letters 2015; 3(2): 251-58.
- 124. StewartI JT, Honigberg L, Brant JP, Murray WA, Webb JL and Smith JB: Liquid Chromatography in Pharmaceutical Analysis V: Determination of an Isoniazid–Pyridoxine Hydrochloride Mixture. Journal of Pharmaceutical Sciences 1976; 65(10): 1536-39.
- 125. Khan SS and Noorulla SM: A review on RP-HPLC of anti tubercular drugs. World Journal of Pharmacy and Pharmaceutical Sciences 2018; 7(3): 284-99.
- 126. Valson JA and Boddu S: Method development and validation of RP-HPLC method for simultaneous estimation of isoniazid, ethambutol hydrochloride and rifampicin in bulk and combined tablets dosage forms. World Journal of Pharmacy and Pharmaceutical Sciences 2017; 6(5): 1464-72.
- 127. Adepu GS, Srikala A and Rajitha G: Analytical method development and validation for simultaneous estimation of isoniazid, thiacetazone and pyridoxine HCl in tablet dosage form By RP-HPLC method. Journal of Global Trends in Pharmaceutical Sciences 2017; 8(1): 3622-33.
- 128. Rasheed A: Stability indicating analytical method development and validation for isoniazid, thiacetazone and pyridoxine by RP-HPLC UV method. International Journal of Farmacia 2016; 2(4): 225-34.
- 129. Tatarczak MG, Flieger J and Szumifo H: High-Performance liquid-chromatographic determination of rifampicin in complex pharmaceutical preparation and in serum mycobacterium tuberculosis-infected patients. Acta PoloniaePharmaceutica – Drug Res 2005; 62(4): 251-56.
- 130. Siddhartha TS, Prasanthi B, Santosh T and Ratna JB: Development and validation of high performance liquid chromatographic method for the determination of rifampicin in human plasma. International Journal of Pharmacy and Pharmaceutical Sciences 2012; 4(5): 362-67.

- 131. Chan K: Rifampicin concentrations in cerebrospinal fluid and plasma of the rabbit by high performance liquid chromatography. Methods and Findings in Experimental and Clinical Pharmacology1986; 8(12): 721-26.
- 132. Louveau B, Fernandez C, Zahr N, Sauvageon-Martre H, Maslanka P, Faure P, Mourah S and Goldwirt L: Determination of rifampicin in human plasma by highperformance liquid chromatography coupled with ultraviolet detection after automatized solid-liquid extraction. Biomedical Chromatography 2016; 30(12): 2009-215.
- 133. Harahap Y, Amalia GA and Maggadan BP: Analysis of rifampicin in dried blood spots using high performance liquid chromatography. Asian Journal of Scientific Research 2018; 11(2): 232-39.
- 134. Vyavahare RD: Stability indicating RP-HPLC method for rifampicin in bulk and pharmaceutical dosage form. International Journal of Pharmacy and Pharmaceutical Research 2017; 10(4): 265-82.
- 135. Sabitha P, Ratna JV and Reddy KR: Development and validation of New RP-HPLC method with UV detection for the determination of rifampicin in plasma. Journal of Pharmacy Research 2009; 2(10): 1561-64.
- 136. Swamy N, Basavaiah K, Vamsikrishna P and Krishnamurthy G: Development and validation of a stability-indicating ultra-performance liquid chromatographic method for the determination of rifampicin in bulk drug and capsules. The Thai Journal of Pharmaceutical Sciences 2015; 39(2): 41-48.
- 137. Eleonora WJ van, Kolmer EB, Teulen MJA, Erik CAV, Hombergh, Lindsey NEV, Brake HM and Aarnoutse RE: Determination of protein-unbound, active rifampicin in serum by ultrafiltration and ultra performance liquid chromatography with UV detection. Journal of Chromatography B 2017; 1063: 42-49.
- 138. Conte JE, Lin E and Zurlinden E: Liquid Chromatographic Determination of Rifampin in Human Plasma, Bronchoalveolar Lavage Fluid and Alveolar Cells. Journal of Chromatographic Science 2000; 38: 72-76.
- 139. Lily, Laila L and Prasetyo BE: Optimization and validation of high-performance liquid chromatography method for analysing 25-desacetyl rifampicin in human urine. IOP Conf. Series: Earth and Environmental Science 2018; 125: 1-6.
- 140. Manuilov KK and Gagaeva EV: Quantitative analysis of rifampicin and 25-desacetylrifampicin in the plasma using high performance liquid chromatography. Antibiotiki I khimioterapiia = Antibiotics and Chemoterapy [sic] / Ministerstvomeditsinskoĭimikrobiologicheskoĭpromyshlen nosti SSSR 1989; 34(9): 682-84.
- 141. Kumar S, Bouic PJ and Rosenkran B: A validated stable hplc method for the simultaneous determination of rifampicin and 25-o-desacetyl rifampicin- evaluation of in vitro metabolism. Acta Chromatographica 2017; DOI: 10.1556/1326.2018.00361: 1-7.
- 142. Kumar AKH, Chandra I, Geetha R, Chelvi KS, Lalitha V and Prema G: A validated high-performance liquid chromatography method for the determination of rifampicin and desacetyl rifampicin in plasma and urine. Indian Journal of Pharmacology 2004; 36(4): 231-33.
- 143. Liu J, Sun J, Zhang W, Gao K and He Z: HPLC determination of rifampicin and related compounds in pharmaceuticals using monolithic column. Journal of Pharmaceutical and Biomedical Analysis2008; 46(2): 405-09.
- 144. Pereira MN, Matos BN, Gratieri T, Cunha-Filho M and Gelfuso GM: Development and validation of a simple

chromatographic method for simultaneous determination of clindamycin phosphate and rifampicin in skin permeation studies. Journal of Pharmaceutical and Biomedical Analysis 2018; 159: 331-340.

- 145. Gikas E, Gikas E and Fanourgiakis P: Simultaneous quantification of daptomycin and rifampicin in plasma by ultra performance liquid chromatography: application to a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 2009; 51(4): 901-06.
- 146. Sachin BS, Bhat V, Koul M, Subhash, Sharma C, Tikoo MK, Tikoo AK, Satti NK, Suri KA and Johri RK: Development and validation of a RP-HPLC method for the simultaneous determination of rifampicin and a flavonoid glycoside a novel bioavailability enhancer of rifampicin. Tropical Journal of Pharmaceutical Research 2009; 8(6): 531-37.
- 147. Aparicio I, Bello MA, Callejon M and Guiraum A: Simultaneous determination of rifampicin and sulbactam in mouse plasma by high-performance liquid chromatography. Biomedical Chromatography 2006; 20(8): 748-52.
- 148. Shah U, Patel S and Raval M: Stability Indicating reverse phase HPLC method for estimation of rifampicin and piperine in pharmaceutical dosage form. Current Drug Discovery Technologies 2018; 15(1): 54-64.
- 149. Shah P, Pandya T, Gohel M and Thakkar V: Development and validation of HPLC method for simultaneous estimation of rifampicin and ofloxacin using experimental design. Journal of Taibah University for Science 2019; 13(1): 146-54.
- 150. Luciani-Giacobbe LC, Guzman ML, Manzo RH and Olivera ME: Validation of a simple isocratic HPLC-UV method for rifampicin and isoniazid quantification in human plasma. Journal of Applied Pharmaceutical Science 2018; 8(7): 93-99.
- 151. Kumari MK, Kasthuri JK, Babu BH, Satyanarayana PVV and Tchaleu BN: A validated liquid chromatographic method for the determination of rifampicin and isoniazid in pharmaceutical formulations. British Journal of Pharmaceutical Research 2015; 7(4): 299-307.
- 152. Kumar AKH, Sudha V and Ramachandran G: Simple and rapid high pressure liquid chromatography method for estimation of ethionamide in plasma. Asian Journal of Biomedical and Pharmaceutical Sciences 2014; 4(38): 1-5.
- 153. Nakano Y, Nohta H, Yoshida H, Todoroki K, Saita T, Fujito H, Mori M and Yamaguchi M: Liquid chromatographic determination of ethambutol in serum samples based on intramolecular excimer-forming fluorescence derivatization. Anal Sci 2004; 20: 489-92.
- 154. Singh H, Sharma G and Kaur IP: Development and validation of an UPLC method for the quantification of ethambutol in rat plasma. Royal Society of Chemistry. Advances 2014; 4: 42831-38.
- 155. Ranganath MK, Chandramouli R, Sandeep K and Prasad K: Method development and validation of anti-tubercular drugs in fixed dose formulation by RP-HPLC technique. International Journal of Universal Pharmacy and Bio Sciences 2013; 2(4): 432-39.
- 156. Revankar SN, Desai ND, Vaidya AB, Bhatt AD and Anjaneyulu B: Determination of Pyrazinamide in Human by High Performance Liquid Chromatography. Journal of Postgraduate Medicine 1994; 40(1): 7-9.
- 157. Siddhartha TS, Prasanthi B, Santosh T and Ratna JV: Development and validation of high performance liquid chromatographic method for the determination of pyrazinamide in human plasma. Journal of Pharmacy Research 2013; 7(1): 33-38.

- 158. Mulyani E, Darmawan E, Perwitasari DA, Mulyani UA and Atthobari J: Validation of pyrazinamide in human plasma using HPLC-UV for therapeutic drug monitoring. AIP Conference Proceedings 2016; 1746(1): 1-6.
- 159. Conte JE, Lin E and Zurlinden E: High-Performance liquid chromatographic determination of pyrazinamide in human plasma, bronchoalveolar lavage fluid, and alveolar cells. Journal of Chromatographic Science 2000; 38: 33-37.
- 160. Chenna GP, Shetty ASK and Pai JB: Development and validation of RP-HPLC method for quantitative estimation of pyrazinamide in bulk and pharmaceutical dosage forms. International Journal of PharmTech Research 2011; 3(3): 1275-80.
- 161. Sathyaveni: Forced degradation studies of Pyrazinamide in bulk and formulation by UV, IR spectrophotometry and UHPLC Method (Master's thesis). 2016, Retrieved from http://repository-tnmgrmu.ac.in/id/eprint/6346
- 162. Mishra P, Durgbanshi A, Pawar RP, Sharma G and Biswas P: Quality Control of Pyrazinamide in Formulation Using Micellar Liquid Chromatography. International Journal of Pharmaceutical Sciences and Res 2017; 8(11): 4637-44.
- 163. Woo J, Wong CL, Teoh R and Chan K: Liquid chromatographic assay for the simultaneous determination of pyrazinamide and rifampicin in serum samples from patients with tuberculous meningitis. Journal of Chromatography A 1987; 420(1): 73-80.
- 164. Mahjoub AA, Khan AH, Sulaiman SAS, Lajis R, Man CN and Ali IAH: Simultaneous determination of isoniazid and pyrazinamide in plasma by high performance liquid chromatography. Tropical Journal of Pharmaceutical Research 2016; 15(11): 2475-81.
- 165. El Bouazzi O, Badrane N, Zalagh F, Bencheikh RS, Bengueddour R and Moussa LA: Optimization and validation of rapid and simple method for determination of isoniazid and pyrazinamide in plasma by HPLC-UV. Journal of Chemical and Pharmaceutical Research 2016; 8(3): 165-69.
- 166. Kumar AKH, Sudha V and Ramachandran G: Simple and rapid liquid chromatography method for simultaneous determination of isoniazid and pyrazinamide in plasma. SAARC Journal of Tuberculosis, Lung Diseases & HIV/AIDS 2012; 9(1): 13-18.
- 167. Arige SD and Rao AL: RP-HPLC method development and validation for simultaneous estimation of isoniazid and pyrazinamide. International Journal of Applied Pharmaceutical Sciences 2017; 4(5): 1-11.
- 168. Bhanushali CJ, Zidan AS, Rahman Z and Habib MJ: Ion-Pair Chromatography for simultaneous analysis of ethionamide and pyrazinamide from their porous microparticles. The American Association of Pharmaceutical Scientists 2013; 14(4): 1313-20.
- 169. Gunasekaran S and Sailatha E: Estimation of pyrazinamide, isoniazid and rifampicin in pharmaceutical formulations by high performance liquid chromatography method. Asian Journal of Chemistry 2009; 21(5): 3561-66.
- 170. Khuhawar MY and Rind FM: High performance liquid chromatographic determination of isoniazid, pyrazinamide and rifampicin in pharmaceutical preparations. Pakistan Journal of Pharmaceutical Sciences 1998; 11(2): 49-54.
- 171. Mariappan TT, Singh B and Singh S: A validated reversed-phase (C18) HPLC Method for Simultaneous determination of rifampicin, isoniazid and pyrazinamide in USP dissolution medium and simulated gastric fluid. Pharmacy and Pharmacology Communication 2000; 6: 345-49.
- 172. Glass BD, Agatonovic-Kustri S, Chen YJ and Wisch MH: Optimization of a stability-indicating HPLC method for

the simultaneous determination of rifampicin, isoniazid, and pyrazinamide in a fixed-dose combination using artificial neural networks. Journal of Chromatographic Science 2007; 45: 38-44.

- 173. Smith PJ, van Dyk J and Fredericks A: Determination of rifampicin, isoniazid and pyrazinamide by high performance liquid chromatography after their simultaneous extraction from plasma. The International Journal of Tuberculosis and Lung Disease 1999; 3(11): 325-28.
- 174. Prasanthi B, Ratna JV and Phani RSC: Development and validation of RP-HPLC method for simultaneous estimation of rifampicin, isoniazid and pyrazinamide in human plasma. Journal of Analytical Chemistry 2015; 70(8): 1015-22.
- 175. Khatak S, Khatak M, Ali F, Rathi A, Singh R, Singh GN and Dureja H: Development and validation of a RP-HPLC method for simultaneous estimation of antitubercular drugs in solid lipid nanoparticles. Indian Journal of Pharmaceutical Sciences 2018; 80(6): 996-1002.
- 176. Khuhawar MY, Rind FMA and Rajper AD: Highperformance liquid chromatographic determination of isoniazid, pyrazinamide and indomethacin in pharmaceutical preparations. Acta Chromatographica 2005; 15: 269-75.
- 177. Zhou Z, Chen L, Liu P, Shen M and Zou F: Simultaneous determination of isoniazid, pyrazinamide, rifampicin and acetylisoniazid in human plasma by high-performance liquid chromatography. Analytical Sciences 2010; 26: 1133-38.
- 178. Khoiriab S, Martonoa S and Rohman A: Optimisation and validation of hplc method for simultaneous quantification of rifampicin, isoniazid, pyrazinamide and ethambutol hydrochloride in anti-tuberculosis 4-Fdc tablet. Journal Teknologi (Sciences & Engineering) 2015; 77(1): 171-76.
- 179. Chellini, Paula R, Lages, Eduardo B, Franco, Pedro HC, Nogueira, Fernando HA, Cesar, Isabela C, Pianetti and Gerson A: Development and validation of an hplc method for simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol hydrochloride in pharmaceutical formulations. Journal of AOAC International 2015; 98(5): 1234-39.
- 180. HPLC Assay Method for Drug Products Containing Anti-Tuberculosis Active Pharmaceutical Ingredients. (n.d). Retrieved February 2020, from https://assets. thermofisher.com/TFS-Assets/CMD/Application-Notes /AN-257-LC-Anti-Tuberculosis-Drug-Ingredients-LPN2575-EN.pdf
- 181. Hagga MAM and Sultana S: A novel quantitative method for the simultaneous assay of Rifampicin (RIF), Isoniazid (INH), Ethambutol (EMB) and Pyrazinamide (PYP) in 4-FDC tablets. Oriental Journal of Chemistry 2016; 32(6): 3081-87.
- 182. Lakshmi DS and Jacob JT: Validated degradation studies for the estimation of pyrazinamide, ethambutol, isoniazid and rifampicin in a fixed dose combination by UPLC. Research Journal of Pharmacy and Technology 2018; 11(7): 1-5.
- 183. Dhal SK and Sharma R: Development and validation of RP-HPLC method for simultaneous determination of pyridoxine hydrochloride, isoniazid, pyrazinamide and rifampicin in pharmaceutical formulation. Analytical Chemistry 2009; 54: 1487-1500.
- 184. Kumar AKH, Sudha V and Ramachandran G: Simple and Rapid Liquid Chromatography Method for Determination of Rifabutin in Plasma. SAARC Journal of Tuberculosis, Lung Diseases & HIV/AIDS2012; 9(2): 26-29.

- 185. Singh G and Srivastava AK: High-performance liquid chromatography method validation and development strategy for rifabutin. International Journal of Pharmaceutical Science and Research 2018; 9(9): 3903-07.
- 186. Patil YD and Banerjee SK: RPHPLC method for the estimation of rifabutin in bulk dosage form. International Journal of Drug Development and Research 2012; 4(2): 294-97.
- 187. Sangshetti JN, Hingankar S, Waghule A and Shinde D: Stability-indicating (Liquid Chromatographic) LC method for the determination of rifabutin in bulk drug and in pharmaceutical dosage form. African Journal of Pharmacy and Pharmacology 2011; 5(3): 298-305.
- 188. Lau YY, Hanson GD and Carel BJ: Determination of rifabutin in human plasma by high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography. B, Biomedical applications 1996; 676(1): 125-30.
- 189. Lewis RC, Hatfield NZ and Narang PK: A sensitive method for quantitation of rifabutin and its desacetyl metabolite in human biological fluids by high-performance liquid chromatography (HPLC). Pharmaceutical Research 1991; 8(11): 1434-40.
- 190. Tahir A, Kalkotwar RS, Patil S, Momin H and Jameel A: Development and validation of RP-HPLC method for the estimation of rifapentine in bulk and pharmaceutical formulation. American Journal of Advanced Drug Delivery 2014; 2(1): 76-84.
- 191. Bethi MR and Bethanamudi P: analytical method development and validation of impurity profile in rifapentine. International Journal of Theoretical & Applied Sciences 2017; 9(2): 99-105.
- 192. Kumar AKH, Sudha V and Ramachandran G: Simple and rapid high pressure liquid chromatography method for estimation of ethionamide in plasma. Asian Journal of Biomedical and Pharmaceutical Sciences 2014; 4(38): 1-5.
- 193. Madni MA, Ahmad M and Naveed A: An improved HPLC method for the determination of ethionamide in serum. Journal of the Chemical Society of Pakistan 2008; 30(3): 449-452.
- 194. Kahsay, Getu, Shraim, Fairouz, Lin, Qi, Van Schepdael, Ann, Adams and Erwin: Development and validation of a fast reversed phase liquid chromatographic method for the analysis of ethionamide in dosage forms. Current Pharmaceutical Analysis 2018; 14(3): 312-19.
- 195. Rosselli V, Guerrero N, Tripodi V, Lucangioli S and Manco K: Analytical stability indicating HPLC method for an anti-tuberculosis drug ethionamide in raw material and pharmaceutical dosage forms. Latin American Journal of Pharmacy 2016; 35(7): 1601-06.
- 196. Rahade P, Sonawane S, Bhalerao A and Kshirsagar S: Development of a validated RP-HPLC method for estimation of ethionamide in spiked human plasma with UV detection. Asian Journal of Research in Pharmaceutical Sciences 2016; 6(4): 230-34.
- 197. Munib-ur-Rehman, Yousuf RI and Shoai MH: A Stability-Indicating high performance liquid chromatographic assay for the simultaneous determination of pyridoxine, ethionamide, and moxifloxacin in fixed dose combination tablets. Chromatography Research International-Hindawi 2014; 1-8.
- 198. David V, Ionescu M and Dumitrescu V: Determination of Cycloserine in human plasma by high-performance liquid chromatography with fluorescence detection, using derivatization with p-benzoquinone. Journal of chromatography. B, Biomedical Sciences and Applications 2001; 761(1): 27-33.

- 199. Pendela and Mural: development of a liquid chromatographic method for the determination of related substances and assay of d-cycloserine. Journal of Pharmaceutical and Biomedical Analysis 2008, 47(8): 807-11.
- 200. Karthikeyan K, Arularasu GT, Ramadhas R and Pillai KC: Development and validation of indirect RP-HPLC method for enantiomeric purity determination of d-cycloserine drug substance. Journal of Pharmaceutical and Biomedical Analysis 2011; 54: 850-54.
- 201. Gandhi SV, Shevale VP and Choudhari GB: Development and validation of a stability indicating RP-HPLC method for the determination of terizidone. Indo American Journal of Pharmaceutical Sciences 2018; 5(3): 1353-61.
- 202. Mulubwa M and Mugabo P: Analysis of terizidone in plasma using HPLC-UV method and its application in pharmacokinetic study of patients with drug-resistant tuberculosis. Biomedical Chromatography 2018; 32(2): DOI:10.1002/bmc.4325.
- 203. Hong L, Jiang W, Zheng W and Zeng S: HPLC analysis of para-aminosalicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues. J of Pharmaceutical and Biomedical Analysis 2011; 54(5): 1101-09.
- 204. Vasbinder E, Van der Weken G, Heyden YV, Baeyens WRG, Debunne A, Remon JP and Garcia-Campana AM: Quantitative determination of p-aminosalicylic acid and its degradation product m-aminophenol in pellets by ion-pair high-performance liquid chromatography applying the monolithic chromolith speedrod RP-18e column. Biomedical Chromatography 2004; 18: 55-63.
- 205. Dousa M, Reitmajer J, Lustig P and Stefko M: Effect of chromatographic conditions on enantioseparation of bedaquiline using polysaccharide-based chiral stationary phases in RP-HPLC. Journal of Chromatographic Science 2016; 54(9): 1501-07
- 206. Momin M, Rangnekar B and Das S: Development and validation of a RP-HPLC method for simultaneous quantification of bedaquiline (TMC207), moxifloxacin and pyrazinamide in a pharmaceutical powder formulation for inhalation. Journal of Liquid Chromatography and Related Technologies 2018; 41(8): 1-7.
- 207. Momin MAM, Woravimol SJT and Das KSC: Simultaneous HPLC assay for Pretomanid (PA-824), moxifloxacin and pyrazinamide in an inhaler formulation for drug-resistant tuberculosis. Journal of Pharmaceutical and Biomedical Analysis 2016; DOI: 10.1016/j.jpba.2016. 11.046: 1-27.
- 208. Guermouche S and Guermouche MH: Solid-Phase extraction and HPTLC determination of isoniazid and acetylisoniazid in serum comparison with HPLC. Journal of Chromatographic Science 2004; 42: 250-53.
- 209. Ali J, Ali N, Sultana Y, Baboota S and Faiyaz S: Development and validation of a stability-indicating HPTLC method for analysis of antitubercular drugs. Acta Chromatographica 2007; 18: 168-79.
- 210. Avachat A and Bhise SB: Stability-indicating validated HPTLC method for simultaneous analysis of rifabutin and isoniazid in pharmaceutical formulations. Journal of Planar Chromatography – Modern TLC 2010; 23(2): 123-28.
- 211. Puthusseri S and Mathew M: Validated HPTLC method for simultaneous estimation of rifampicin, isoniazid and pyridoxine hydrochloride in combined tablet dosage form. World Journal of Pharmaceutical Research 2014; 3(10): 523-36.
- 212. Pandey S and Udupa N: Simultaneous HPTLC determination of rifampicin and isoniazid in rat plasma. Indian Journal of Pharmaceutical Sciences 2003: 414-16.

- 213. Vedaste K, Egide K, Claver KP and Kaale E: Development and validation of high-performance thinlayer chromatographic method for the simultaneous determination of rifampicin, isoniazid and pyrazinamide in a fixed dosage combination tablet. Journal of Planar Chromatography 2014; 27(5): 392-97.
- 214. Bhole R and Phadke S: Development and validation of high-performance thin-layer chromatography and MS-MS method for estimation of terizidone in pharmaceutical dosage form. Thai Journal of Pharmaceutical Sciences 2018; 42(4): 196-202.
- 215. Khuhawar MY and Zardari LA: Capillary gas chromatographic determination of isoniazid in pharmaceutical preparations and blood by precolumn derivatization with trifluoroacetylacetone. Journal of Food and Drug Analysis 2006; 14(4): 323-28.
- 216. Acedo-Valenzuela MI, Espinosa-Mansilla A and de la Pena AM: Determination of antitubercular drugs by micellar electrokinetic capillary chromatography (MEKC). Analytical and Bioanalytical Chemistry 2002; 374: 432-436.
- 217. Szlosarczyk M, Piech R, Bator BP, Maslanka A, Opoka W and Krzek J: Voltammetric determination of isoniazid using cyclic renewable mercury film silver based electrode. Pharmaceutica Analytica Acta 2012; 3(189): 2-5.
- 218. Balasubramanian P, Thirumalraj B, Chen SM and Barathi P: Electrochemical determination of isoniazid using gallic acid supported reduced graphene oxide. Journal of the Electrochemical Society 2017; 164(7): H503-H508.
- 219. Demirkaya-Miloglu F, Oznuluer T, Ozdurak B and Miloglu E: Design and optimization of a new voltammetric method for determination of isoniazid by using PEDOT modified gold electrode in pharmaceuticals. Iranian Journal of Pharmaceutical Research 2016; 15(Special issue): 65-73.
- 220. Quintino MSM and Angnes L: Fast BIA-Amperometric determination of isoniazid in tablets. Journal of Pharmaceutical and Biomedical Analysis 2006; 42(3): 400-04.
- 221. Leandro KC, de Carvalho JM, Giovanelli LF and Moreira JC: Development and validation of an electroanalytical methodology for determination of isoniazid and rifampicin content in pharmaceutical formulations. Brazilian Journal of Pharmaceutical Sciences 2009; 45(2): 331-37.
- 222. Mahmoud BG, Khairy M, Rashwan FA and Banks CE: Simultaneous voltammetric determination of acetaminophen and isoniazid (hepatotoxicity-related drugs) utilizing bismuth oxide nanorod modified screenprinted electrochemical sensing platforms. Analytical Chemistry 2017; 89: 2170-78.
- 223. Bergamini MF, Santos DP and Zanoni MVB: Electrochemical behavior and voltammetric determination of pyrazinamide using a poly-histidine modified electrode. Journal of Electroanalytical Chemistry 2013; 690: 47-52.
- 224. Ferraz BRL, Leite FRF, Batista BL and Malagutti AR: Voltammetric determination of ethionamide in pharmaceutical formulations and human urine using a boron-doped diamond electrode. Journal of the Brazilian Chemical Society 2016; 27(4): 677-84.
- 225. Ferraz BRL, FigueiredoLeite FR and Malagutti AR: Simultaneous determination of ethionamide and pyrazinamide using poly(l-cysteine) film modified glassy carbon electrode. Talanta 2016; 154: 197-207.
- 226. Pattar VP and Nandibewoor ST: Electrochemical studies for the determination of an antibiotic drug, d-cycloserine, in pharmaceutical and human biological samples. Journal

of Taibah University for Science 2015; DOI: 10.1016/j.jtusci.2015.05.003: 1-28.

- 227. Pattar VP and Nandibewoor ST: Selective and sensitive electro chemical determination of d-cycloserine using graphene paste sensor and its application studies. Analytical Chemistry Letters2016; 6(5): 478-91.
- 228. Swamy N, Kanakapura B and Vinay KB: Titrimetric assay of isoniazid with perchloric acid in non-aqueous medium. Journal of Analytical Chemistry 2015; 70(6): 696-99.
- 229. Modification of the Estimation of Ethambutol Hydrochloride. (n.d). Retrieved February 2020, from http://shodhganga.inflibnet.ac.in/bitstream/10603/158478/ 8/08_chapter%204.pdf
- 230. Wang A, Zhang W, Sun J, Li JF, Sang Y, Gao S and He Z: HPLC-MS analysis of isoniazid in dog plasma. Chromatographia 2007; 66(9): 741-45.
- 231. Gerona R, Wen A, Chin AT, Koss CA, Bacchetti P, Metcalfe J and Gandhi M: Quantifying isoniazid levels in small hair samples: a novel method for assessing adherence during the treatment of latent and active tuberculosis. PloS One 2016; 11(5): 1-11.
- 232. Prajapati P and Agrawal YK: Development of a green method for separation and identification of the degradation impurity of isoniazid by SFC-MS/MS. Analytical Methods 2015; 7: 7776-83.
- 233. Kumar PP and Murthy TEGK: A new, simple and rapid method for simultaneous determination of ethambutol and isoniazid in dried blood spots by lc-ms/ms and its application to pharmacokinetic study. International Journal of Chemical and Analytical Science 2014; 5(1): 49-54.
- 234. Chen X, Song B, Jiang H, Yu K and Zhong D: A liquid chromatography/tandem mass spectrometry method for the simultaneous quantification of isoniazid and ethambutol in human plasma. Rapid Communications in Mass Spectrometry 2005; 19: 2591–2596.
- 235. Rakusa CT, Roskar R, Andrejc AK, Lusin TT, Faganeli N, Grabnar I, Mrhar A, Kristl A and Trontelj J: Fast and simple LC-MS/MS method for rifampicin quantification in human plasma. International Journal of Analytical Chemistry- Hindawi 2019; 1-7.
- 236. Srivastava A, Waterhouse D, Ardrey A and Ward SA: quantification of rifampicin in human plasma and cerebrospinal fluid by a highly sensitive and rapid liquid chromatographic-tandem mass spectrometric method. Journal of Pharmaceutical and Biomedical Analysis 2012; 70: 523-28.
- 237. Patil JS, Suresh S, Sureshbabu AR and Rajesh MS: Development and validation of liquid chromatographymass spectrometry method for the estimation of rifampicin in plasma. Indian Journal of Pharmaceutical Sciences 2011; 73(5): 558-63.
- 238. Burhan A and Vyas B: A rapid, sensitive and validated ultra performance liquid chromatography and tandem mass spectrometry method for determination of rifampicin in rat plasma: application to pharmacokinetic study. International Journal of Pharmacy and Pharmaceutical Sciences 2017; 9(2): 222-27.
- 239. Sivaram V, Kumar AKH, Kumar AK, Sudha V and Ramachandran G: UFLC/MS method for the estimation of ethambutol in human plasma and its application in tuberculosis patients. Asian Journal of Biomedical and Pharmaceutical Sciences 2015; 5(41): 1-6.
- 240. Determination of The Ethambutol in Its Dosage Form and Human Urine Samples by SFC-MS/MS. (n.d). Retrieved February 2020, from http://shodhganga.inflibnet.ac.in/ bitstream/10603/55029/9/09_chapter%203.pdf

- 241. Gong Z, Basir Y, Chu D and McCort-Tipton M: A rapid and robust liquid chromatography/tandem mass spectrometry method for simultaneous analysis of antituberculosis drugs-ethambutol and pyrazinamide in human plasma. Journal of Chromatography B 2009; 877(16-17): 1698-1704.
- 242. Krishna AC, Saravanan RS, Jeevanantham S, Vignesh R and Karthik P: Determination of pyrazinamide in human plasma samples containing fixed dose combination molecules by using liquid chromatography tandem mass spectrometry. Advances in Pharmacoepidemiology & Drug Safety 2012; 1(2): 1-5.
- 243. Identification, Separation and Simultaneous Quantitative Estimation of The Isoniazid and Pyrazinamide in Its Dosage Form by SFC-MS/MS. (n.d). Retrieved February 2020, from http://shodhganga.inflibnet.ac.in/bitstream/ 10603/55029/8/08_chapter%202.pdf
- 244. Sturkenboom MGG, van der Lijke H, Jongedijk EM, Kok WT, Greijdanus B, Uges DRA and Alffenaar JWC: Quantification of isoniazid, pyrazinamide and ethambutol in serum using liquid chromatography-tandem mass spectrometry. Journal of Applied Bioanalysis 2015; 1(3): 89-98.
- 245. Luyen LT, Hung TM, Huyen LT, Tuan LA, Huong DTL, Duc HV and Tung BT: Simultaneous determination of pyrazinamide, rifampicin, ethambutol, isoniazid and acetyl isoniazid in human plasma by LC-MS/MS method. Journal of Applied Pharmaceutical Science 2018; 8(09): 61-73.
- 246. LC-MS/MS Determination of Rifabutin and 25-O-deacetyl Rifabutin in Human Plasma.(n.d.). Retrieved February 2020, from https://www.qps.com/posters/QPS%202009-015_30.pdf
- 247. Jaiswal S, Sharma A, Shukla M and Lal J: Simultaneous LC–MS-MS determination of lopinavir and rifabutin in human plasma. Journal of Chromatographic Science 2017; 55(6): 617-24.
- 248. Parsons TL, Marzinke MA, Hoang T, Bliven-Sizemore E, Weiner M, Kenzie WRM, Dorman SE and Dooley KE: Quantification of rifapentine, a potent antituberculosis drug, from dried blood spot samples using liquid chromatographic-tandem mass spectrometric analysis. Antimicrobial Agents and Chemotherapy 2014; 58(11): 6747-57.
- 249. Stepanova ES, Ovcharov MV, Barsegyan SS and Chistyakov VV: Determination of cycloserine in blood plasma by HPLC/MS: Application to Bioequivalence Studies. Pharmaceutical Chemistry Journal 2016; 50(3): 42-46.
- 250. Yan L, Xie A, Wang Z, Zhang W, Huang Y and Xiao H: Pharmacokinetics of Cycloserine in rats by HPLC-MS/MS. Medicinal Chemistry 2015; 5(2): 104-107.
- 251. Srinivasa RP, Nageswara RP, Maddela R, Gajula R and Gandu V: A rapid and sensitive liquid chromatographytandem mass spectrometric assay for cycloserine in 50 ml of human plasma: its pharmacokinetic application. Journal of Pharmaceutical and Biomedical Analysis 2013; 76(1): 21-27.
- 252. Mao Z, Wang X, Li B, Jin J, Xu M, Liu Y and Di X: A simplified LC-MS/MS method for rapid determination of cycloserine in small-volume human plasma using protein precipitation coupled with dilution techniques to overcome matrix effects and its application to a pharmacokinetic study. Analytical and Bioanalytical Chemistry 2017; 409(11): 3025-32.
- 253. Smit MJ: Development and validation of selective and sensitive LC-MS/MS methods for the determination of para-Aminosalicylic Acid and Cycloserine / Terizidone

applicable to clinical studies for the treatment of tuberculosis (Master'sthesis). 2018,Retrieved fromhttps://open.uct.ac.za/handle/11427/29814?show=full

- 254. Alffenaar JWC, Bolhuis M, van Hateren K and Sturkenboom M: Determination of bedaquiline in human serum using liquid chromatography-tandem mass spectrometry. Antimicrobial Agents and Chemotherapy 2015; 59(9): 5675-580.
- 255. Hui Z, Zhong-Quan L, Li X, Sho-Chen G, Lie WBF and Luy: Determination of bedaquiline plasma concentration by high performance liquid chromatography-mass spectrometry/ mass spectrometry. Chinese Journal of Antituberculosis2018; 40(12): 1319-24.
- 256. Metcalfe J, Gerona R, Wen A, Bacchetti P and Gandhi M: An LC-MS/MS-based method to analyze the antituberculosis drug bedaquiline in hair. International Journal of Tuberculosis and Lung Disease2017; 21(9): 1069-70.
- 257. Hirao Y, Koga T, Koyama N, Shimokawa Y and Umehara K: Liquid chromatography-tandem mass spectrometry methods for determination of delamanid in mouse plasma and lung. American Journal of Analytical Chemistry 2015; 6: 98-105.
- 258. Meng M, Smith B, Johnston B, Carter S, Brisson J and Roth SE: Simultaneous Quantitation of Delamanid (OPC-67683) and its Eight Metabolites in Human Plasma Using UHPLC-MS/MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 2015; 1002: 78-91.
- 259. Wang L, Xu Y, Liang L, Diaoa C, Liu X, Zhang J and Zhang S: LC–MS/MS method for the simultaneous determination of pa-824, moxifloxacin and pyrazinamide in rat plasma and its application to pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 2014; 97: 1-8.
- 260. Song SH, Jun SH, Park KU, Yoon Y, Lee JH, Kim JQ and Song J: Simultaneous determination of first-line anti-tuberculosis drugs and their major metabolic ratios by liquid chromatography/tandem mass spectrometry. Rapid Communication in Mass Spectrometry 2007; DOI: 10.1002/rcm.2961
- 261. Baietto L, Poretti V, Baruffi K, Perri GD and D'Avolio A: A new UPLC-MS-MS method to quantify first line antituberculosis agents in plasma spotted on dried sample spots device (DSSD). Azienda Sanitaria Locale Torino 2015: 1.
- 262. Baietto L, Calcagno A, Motta I, Baruffi K, Poretti V, Perri GD, Bonora S and D'Avolio A: A UPLC-MS-MS method for the simultaneous quantification of first-line antituberculars in plasma and in PBMCs. Journal of Antimicrobial Chemotherapy 2015; 70: 2572-75.
- 263. Han M, Jun SH, Lee JH, Park KU, Song J and Song SH: Method for simultaneous analysis of nine second-line antituberculosis drugs using UPLC-MS/MS. Journal of Antimicrobial Chemotherapy 2013; 68: 2066-73.
- 264. Liu Y, Fu Z and Wang L: Capillary electrophoresis analysis of isoniazid using luminol-periodate potassium chemiluminescence system. Luminescence 2011; 26(6): 397-402.
- 265. Alberto J, Vitorazzi N and Pereira D: Fast determination of ethambutol in pharmaceutical formulations using capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 2010; 31(3): 570-74.
- 266. Ermolenko Y, Anshakova A, Osipova N, Kamentsev M, Maksimenko O, Balabanyan V and Gelperina S: Simultaneous determination of rifabutin and human serum albumin in pharmaceutical formulations by capillary

electrophoresis. Journal of Pharmacological and Toxicological Methods 2017; 85: 55-60.

- 267. Cummins CL, O'Neil WM, Soo EC, Lloyd DK and Wainer IW: Determination of p-Aminosalicylic acid and its n-acetylated metabolite in human urine by capillary zone electrophoresis as a measure of *in-vivo* n-acetyl-transferase 1 activity. J of chromatography. B, Biomedical Sciences and Applications 1997; 697(1-2): 283-288.
- 268. Perantoni CB, de Azevedo ABR, Vaz FAS, Marcone, de Oliveira AL, Matos RC and Lowinsohn D: Flow injection analysis of ethambutol in synthetic urine using a graphite-

How to cite this article:

polyurethane composite electrode as an amperometric detector. Central European Journal of Chemistry 2013; 11(10): 1668-73.

- 269. Evgen'ev MI, Garmonov SY and Shakirova L: Selective Determination of 4-aminobenzoic and 4-aminosalicylic acid derivatives in mixtures by flow injection analysis. Journal of Analytical Chemistry 2000; 55(7): 696-702.
- 270. Yong MA, Bo-Tao Z, Li-Xia Z, Guang-Sheng G and Jin-Ming LIN: Determination of rifampicin by peroxomonosulfate-cobalt (II) Chemiluminescence system. Chinese Journal of Chemistry 2008; 26(5): 905-10.

Jani RJ and Patel PU: Review: available analytical methods for the estimation of first line, second line oral and newer anti-TB drugs. Int J Pharm Sci & Res 2021; 12(5): 2500-34. doi: 10.13040/IJPSR.0975-8232.12(5).2500-34.

All © 2013 are reserved by the International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)