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ABSTRACT: Cathepsin S enzyme has been considered as an evolving 

target for the development of novel therapeutic agents for the treatment of 

numerous autoimmune disorders and other inflammatory diseases. Using 

TSAR 3.3 2D QSAR has been performed on a series of dipeptide nitrile 

nucleus. Attempts have been made to derive and comprehend a correlation 

between biological activity and the generated descriptors. The study was 

carried out using 37 compounds by division into training and test set by a 

random selection method. A final QSAR model was generated from a set of 

28 compounds with the Leave-out one row (LOO) method of cross-

validation to estimate the model’s predictive ability. The most significant 

model with n = 28, r = 0.969, r
2 
= 0.939, r

2
cv = 0.801, s value = 0.35, f value 

= 89.07 was developed using MLR analysis. For PLS, the fraction of 

variance explained = 0.928 was observed. A comparable PLS model with r
2 
= 

0.928 and Neural model with r
2 
= 0.962 indicated good internal predictability 

of the model. External test set validation provided r
2
 values of 0.721 and 

0.821 for MLR and PLS analysis, respectively.
 
QSAR model indicated the 

importance of Steric [Verloop B1 (Subs. 4)], Geometrical [Inertia moment 1 

length (Subs. 4), topological [kier Chi V0 (atoms) index (Subs. 2)], and [Kier 

Chi 4 (path) index (Subs.4)] descriptors for the activity of Cathepsin S 

inhibitors. This study will be effective in the design of novel and more potent 

Cathepsin S inhibitors. 

INTRODUCTION: The term “Cathepsin” was 

derived from the Greek word “Kathepsin” which 

means “digesting” 
1, 2

. The human genome consists 

of a total of 11 human cysteine cathepsins 
3
. They 

are cathepsins L, V, S, K, and F (endopeptidases), 

cathepsins X, B, C, and H (exopeptidases), and 

cathepsins O, and W of unknown category 
1, 4, 5, 6

. 

Cathepsin S (gene symbol: CTSS), non-

glycosylated cysteine proteinases belong to clan C1 

(Papain family) 
7, 8

. These are found intracellularly 

in the endolysosomal vesicles 
1, 3, 9

.  
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These are majorly found in dendritic cells, 

macrophages, spleen, lymph nodes, monocytes, 

and/or thymic cortical epithelial cells 
10, 11

. The 

enzyme has an integral role in antigen processing 

and presentation 
12, 13, 14

. Their exclusive dispersal 

pattern specifies its profound contribution to the 

immune response 
1
. 

All cysteine proteases are composed of three units- 

a signal peptide (10-20 amino acids long), a 

propeptide (variable lengths), and a catalytic 

domain (214-260 amino acids long) 
15

. Signal 

peptides are responsible for the translocation into 
the endoplasmic reticulum during mRNA translation. 

Propeptides act as a skeleton to stimulate the 

folding of the catalytic domain. It acts as a 

chaperone to carry the proenzyme to the lysosomal 

compartment. It acts as a high-affinity reversible 

inhibitor to block the premature activation of the 
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catalytic domain. The catalytic domain represents 

the mature, proteolytically active enzyme and it’s 

extremely preserved active site consists of 

Cysteine, Histidine, and Asparagine residues 
1
. 

The structure of Cathepsin S was first disclosed by 

McGrath et al., 1998. It is a single chain mono-

meric protein (217 amino acids) with a molecular 

mass of 30kDa. consisting of two domains. The left 

domain comprises of residues 12-111, and 208-211 

with helices ranging from 25-40, 50-56, and 68-78. 

The right domain is based on a six-stranded β-

barrel motif, residues 1-11, and 112-207, with a 

small helix coiling through residues 119-127, 

additional helix from residues 139-143. The active 

site lies in between the two domains and contains 

the residues Cys25 and His159 
16, 17, 18

. 

The optimal activity of cathepsins requires acidic 

pH. Cys25 as a catalyst forms thiolate ± 

imidazolium ion -pair with Hiatidine -159 at very 

low pka values (̴2.5-3.5) 
17, 19

. The thiolate ion acts 

as a nucleophile for the attack of the carbonyl 

carbon of the sessile peptide bond, which results in 

the release of the amine product. The acyl-enzyme, 

after reacting with water, releases the carboxyl 

product regenerating the free enzyme 
4, 18

. 

Cysteine cathepsin S have a significant role in the 

growth and progression of various inflammation-

associated diseases such as cancer 
15, 20, 21, 22, 23, 24, 

25
, arthritis 

18, 26
, periodontitis 

27
, psoriasis 

18, 28
, 

various lung diseases 
29, 30, 31, 32, 33, 34, 35

, 

cardiovascular disease in patients with chronic 

kidney disease 
36, 37, 38, 39, 40

,   bone 
41

, Sjogren’s 

Syndrome 
42, 43

 and immune disorders 
44

. Cathepsin 

S inhibitors also acts as immunomodulator 
45

. 

Subsequently, there is a need to progress research 

efforts focused on cathepsin S use in diagnostics 

and as therapeutic targets in diseases 
46, 47

. 

Dipeptidyl nitrile inhibitor of cathepsin S has 

proved emerging target for abrogation of tumour
 25

. 

Rheumatoid arthritis (RA) is an autoimmune 

inflammatory disease of unknown etiology 

affecting all synovium joints. The genes encoding 

the major histocompatibility (MHC) molecule are 

clustered on a small segment of chromosome 6 in 

humans. MHC Complex or Human Leukocyte 

Antigen Complex (HLA) molecule plays a central 

role in the pathology of RA 
48

. Antigen-presenting 

cells (APCs) engulfs the antigen. Peroxides inside 

the APCs break down the antigen into small 

portions 
49

. The molecular mechanism commences 

with the MHC II αβ heterodimers synthesis in the 

endoplasmic reticulum and association of a protein, 

namely, the invariant chain (Li) in the peptide-

binding cleft. The αβLi complex gets relocated to 

the lysosome, where a portion of the Li gets sliced 

by cathepsin S, leaving a short fragment- CLIP in 

the active site. It prevents any premature binding of 

antigenic peptides 
50, 51, 52, 53, 54, 55

. Another protein 

HLA-DM assists in the release of CLIP from the 

MHC protein, which provides the binding site for 

the peptide fragments. The complex is transferred 

to the cell surface after binding to the MHC II 

molecule 
50, 56

. This complex is exposed to T-cells 

(CD4 cells i.e., T-helper cell). The T-cell receptor 

(TCR) recognizes and binds to and causes APCs to 

secrete cytokines like IL-1, IFN-α, IFN-γ, TNF, 

and other factors. These, in turn, activate 

lymphocytes and other immune cells to respond to 

the antigens, thus causing inflammation 
18, 34, 48

.  

Quantitative Structure-Activity Relationship 

(QSAR) technique has been used in the modeling 

of biological activity and calculating ADME/ 

Toxicity properties 
57

. A QSAR model correlates 

the structure/chemical characteristics of the 

molecule with their biological activities through 

mathematical equations. This relation is useful in 

designing more potent compounds. Biological 

activities can be predicted for new entities 
58

. A 

QSAR study is significant in enzyme inhibition 

studies and the identification of the important 

active sites in the receptor. Thus, a QSAR study is 

emerging as an important tool in drug design 
59, 60

. 

In the present paper, 2D QSAR analysis has been 

used because of its simplicity and fewer errors. It is 

more advantageous than 3D QSAR analysis as it 

does not involve any conformational search or 

structural alignment 
61, 62

. Since structural 

descriptors encode all the chemical information 
63

, 

2D methodology has been considered superior over 

3D QSAR 
61, 64, 65

. 

MATERIALS AND METHODS: The project 

was completed at Banasthali Vidyapith University, 

Jaipur, Rajasthan by Sneha Kushwaha, as a part of 

her M.Pharma project from July 2013 to June 2014. 

QSAR model has been developed using 37 

congeneric molecules using Multiple Linear 
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Regression (MLR), Partial Least Squares (PLS), 

and Artificial neural network (ANN) 
66

. 

Generation of 3-Dimensional Chemical 

Structures and their Optimization: All the 

chemical structures of dipeptide nitrile derivatives 

stated in the literature 
67

 and reported in Table 1 

were sketched using CHEM DRAW ULTRA 12.0 

software. As compounds 5, 7, and 8 had uncertain 

IC50 values, and 27 was a racemic mixture, all four 

were excluded from the series. 

TABLE 1: STRUCTURE OF CATHEPSINS INHIBITORS USED FOR QSAR ANALYSIS 

 
Compd R1 R2 R3 R4 R5 R6 

6 morpholin-4-yl CH2(i-Pr) H CN H CH2CH2Ph 

9 morpholin-4-yl CH2(i-Pr) H CN H H 

10 morpholin-4-yl CH2(i-Pr) H CCH H H 

12 morpholin-4-yl CH2(i-Pr) H CN H CH3 

13 morpholin-4-yl CH2(i-Pr) H CN H n-Pr 

14 morpholin-4-yl CH2(i-Pr) H CN H n-Bu 

15 morpholin-4-yl CH2(i-Pr) H CN H i-Pr 

16 morpholin-4-yl CH2(i-Pr) H CN H t-Bu 

17 morpholin-4-yl CH2(i-Pr) H CN H Ph 

18 morpholin-4-yl CH2(i-Pr) H CN H CH2Ph 

19 morpholin-4-yl CH2(i-Pr) H CN H CH2(3,4-diCl)Ph 

20 morpholin-4-yl CH2(i-Pr) H CN CH2CH2Ph H 

21 morpholin-4-yl CH2(i-Pr) H CN CH3 CH3 

22 morpholin-4-yl CH2(i-Pr) H CN H CH2OCH2Ph 

23 morpholin-4-yl CH2(i-Pr) H CN H CH2OCH2(o-Cl)Ph 

24 morpholin-4-yl CH2(i-Pr) H CN H CH2OCH2(m-Cl)Ph 

25 morpholin-4-yl CH2(i-Pr) H CN H CH2OCH2(p-Cl)Ph 

26 morpholin-4-yl H CH2(i-Pr) CN H CH2CH2Ph 

28 morpholin-4-yl CH3 H CN H CH2CH2Ph 

29 morpholin-4-yl n-Bu H CN H CH2CH2Ph 

30 morpholin-4-yl i-Pr H CN H CH2CH2Ph 

31 morpholin-4-yl c-Hex H CN H CH2CH2Ph 

32 morpholin-4-yl CH2Ph H CN H CH2CH2Ph 

33 morpholin-4-yl CH2(t-Bu) H CN H CH2CH2Ph 

34 morpholin-4-yl CH2(c-Hex) H CN H CH2CH2Ph 

35 morpholin-4-yl CH2(t-Bu) H CN H CH2OCH2Ph 

36 morpholin-4-yl CH2(c-Hex) H CN H CH2OCH2Ph 

37 morpholin-4-yl CH2(i-Pr) H CN H CH2OCH2(o-Me)Ph 

38 morpholin-4-yl CH2(t-Bu) H CN H CH2OCH2(o-Me)Ph 

39 morpholin-4-yl CH2(c-Hex) H CN H CH2OCH2(o-Me)Ph 

40 morpholin-4-yl CH2(c-Hex) H CN H CH2OCH2(o-Cl)Ph 

41 morpholin-4-yl CH2(c-Hex) H CN H Ph 

42 morpholin-4-yl CH2(c-Hex) H CN CH3 CH3 

43 pyridin-4-yl CH2(c-Hex) H CN H CH2OCH2Ph 

44 furan-2-yl CH2(c-Hex) H CN H CH2OCH2Ph 

45 thein-2-yl CH2(c-Hex) H CN H CH2OCH2Ph 

46 pyrazinyl CH2(c-Hex) H CN H CH2OCH2Ph 
 

The chemical structures were then imported on the 

TSAR worksheet (version 3.3, Accelrys Inc., 

Oxford, England). The series consisted of six main 

substituents which were defined by the “define 

substituent” option in the TSAR worksheet. 

Molecular properties and receptor-ligand 

interaction depend on the connectivity of the atoms 

in a molecule and its 3D-Structure. The three-

dimensional structure defines the physical, 

chemical, and biological properties of the molecule. 
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The molecules and their substituents are converted 

from 2D to 3D by using CORINA. The partial 

atomic charge of the molecule was calculated by 

using the "charge-2-derive charges" option, which 

is essential for several structural manipulations. By 

using COSMIC, 3D optimization of the structures 

was done. Low-energy conformation gets generated 

for each input structure by default 
68

. COSMIC 

parameters include various parameters like valence 

terms (bond potentials, bond angle potentials, and 

torsional potentials) and non-bonded terms 

(electrostatic interaction and van der Waals 

interaction) 
69

. Summing of all these parameters 

calculated total molecular energies using COSMIC. 

The force-field applied by COSMIC for energy 

calculations approves that only the additional 

energetically genuine confirmation is considered 
70

. 

Molecular Descriptors Calculation: Molecular 

descriptor generates a link between chemical 

structure and biological activity. Descriptors map 

the chemical structure into a set of binary/ 

numerical values illustrating numerous molecular 

properties essential for explaining molecular 

property/ activity 
71

. Descriptors are classified into 

different properties such as electronic, geometric, 

hydrophobic, and topological 
72

. 

The activity data of 37 compounds have been 

imported into the TSAR worksheet after the 

experimental IC50 values have been converted to 

log (1/IC50) 
73

. This is done to obtain higher values 

for more effective analogs 
70

. A total of 280 
molecular descriptors, including Molecular attributes, 
Molecular Indices-Topological, Connectivity, Shape 

Indices, Atom Counts, and VAMP were generated 

using TSAR 3.3 software. These descriptors help in 

generating a good QSAR model 
74, 75

. 

Data Reduction: Large data sets may increase the 

risk of overfitting; thus data must be minimized to 

reduce the risk of chance correlation. Descriptors 

with constant values were eliminated. A pair-wise 

correlation reduction method has been used to 

reduce data. The retained descriptors had a higher 

correlation with the biological activity and the least 

intercorrelation (r
2
 > 0.5) 

76
. Forward and backward 

elimination methods were used for the inclusion or 

rejection of descriptors. This was done based on t-

values, the descriptors with poorer t-values were 

rejected 
70

. After data reduction, four independent 

molecular descriptors- Verloop B1 (Subst.4), 

Inertia moment 1 length (Subst.4), Kier Chi V0 

(atoms) index (Subst.2), and Kier Chi 4 (path) 

index (Subst.4) were left with high correlation with 

the dependent variable i.e., the Biological activity. 

Data Set Preparation: The structures of the series 

were randomly divided into a training set 

consisting of 28 compounds and a test set with 9 

compounds. The training set produced linear 

models relating to the structures and the biological 

activity. The molecules of the test set checked the 

predictive power of the developed model 
70

. 

Model Development and Validation: Models can 

be linear or non-linear. Linear models are the 

backbone of QSAR methodology. They include 

Multiple Linear Regression Analysis (MLR) and 

Partial Least Square Analysis (PLS). The non-

Linear Model includes an Artificial Neural 

Network (ANN). MLR has been carried out to 

produce the leading QSAR model. 

Several MLR models were created using the lasting 

descriptors as independent variables and biological 

activity data as dependent variables. These were 

used to compute the relationship between the 

variables. The models were generated in the form 

of a regression equation that described the activity 

data and was further used to predict the activity of 

new compounds. Positive values of the regression 

coefficient state that the given descriptor is 

positively correlated to the biological activity i.e., 

increase in the value of descriptor lead to 

enhancement in the activity value and vice-versa.  

Statistical significance of the regression equations 

is tested based on the regression coefficient (r
2
), 

Fischer's statistic (F), and the standard error of 

estimate 
70

. 

The generated model is validated both internally 

and externally. Cross-validation analysis -leave one 

out (LOO) method was used for internal validation. 

External validation was done by using the model 

developed by the training set. Activities of the test 

set molecules were predicted by this method 
77

. 

PLS is a multivariate analysis based on the 
principal component analysis. It gives the maximum 
correlation between the principal components 

(independent variables) and the dependent variable 

(activity) through linear equation 
78

. PLS analysis 
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was performed on the same training set compounds 

to check the robustness and predictive ability of the 

models generated by MLR. The model generated 

during PLS was also validated using LOO method 
79

. 

 

Artificial neural networks (ANNs) are computer-

based mathematical models developed to have 

functions analogous to idealized simple biological 
nervous systems. They consist of layers of processing 
elements (neurodes), considered analogous to the 

nerve cells (neurons), and interconnected to form a 

network 
80

. 

Dipeptide nitrile inhibitors also possessed a suitable 

pharmacokinetic (ADME) profile which is reported 

in the table.  

Assessment of Druggability: To understand the 

pharmacodynamics and pharmacokinetics of a 

chemical entity, the knowledge of absorption, 

distribution, metabolism, and excretion is 

significant. For this, the violation of Lipinski’s rule 

of five has been checked. According to this rule, H-

bond donors should be less than five, H-bond 

acceptors should be less than ten, clog P (calculated 

log P) should be less than five, and molecular 

weight should be less than 500 Da. for excellent 

oral absorption of a compound. This calculation 

was done with the aid of “ADME check” option in 

the TSAR worksheet. Table 2 shows the values of 

the calculated parameters for Lipinski’s rule of five 
70

. 

TABLE 2: VALUES OF THE CALCULATED PARAMETERS FOR LIPINSKI’S RULE OF FIVE 

Comp. 

Name 

ADME  

(Molecular weight) 

ADME(H-Bond 

Acceptors) 

ADME(H-Bond 

Donors) 

ADME 

(Log P) 

ADME 

Voilations 

6 386.55 4 2 2.077 0 

9 282.39 4 2 -0.542 0 

10 281.4 3 2 0.023 0 

12 296.42 4 2 -0.004 0 

13 324.48 4 2 0.860 0 

14 338.51 4 2 1.256 0 

15 324.48 4 2 0.866 0 

16 338.51 4 2 1.372 0 

17 358.49 4 2 1.429 0 

18 372.52 4 2 1.681 0 

19 441.4 4 2 2.717 0 

20 386.55 4 2 2.077 0 

21 310.45 4 2 0.197 0 

22 402.55 5 2 1.264 0 

23 436.99 5 2 1.782 0 

24 436.99 5 2 1.782 0 

25 436.99 5 2 1.782 0 

26 386.55 4 2 2.077 0 

28 344.46 4 2 0.882 0 

29 386.55 4 2 2.143 0 

30 372.52 4 2 1.753 0 

31 412.59 4 2 2.438 0 

32 420.56 4 2 2.567 0 

33 400.58 4 2 2.510 0 

34 426.62 4 2 2.762 0 

35 416.58 5 2 1.697 0 

36 442.62 5 2 1.949 0 

37 416.58 5 2 1.731 0 

38 430.61 5 2 2.165 0 

39 456.65 5 2 2.416 0 

40 477.06 5 2 2.467 0 
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41 398.56 4 2 2.114 0 

42 350.52 4 2 0.882 0 

43 434.59 5 2 3.136 0 

44 423.56 5 2 2.931 0 

45 439.62 4 2 3.274 0 

46 435.58 6 2 2.688 0 
 

RESULTS: MLR was performed with 28 

compounds in the training set and 9 compounds in 

the test set. None of the outliers were removed. The 

statistical values of the regression analysis are 

listed in Table 3. 

TABLE 3: STATISTICAL VALUES OBTAINED BEFORE 

DATA REDUCTION AND AFTER PERFORMING MLR 

ANALYSIS 

S. 

no. 
Statistical tests Values before 

data reduction 
Values 

after MLR 
1 s value 0.191 0.35 
2 f value 147.614 89.07 
3 Regression coefficient, r 0.991 0.969 
4 r2 0.982 0.939 
5 Cross validation, r2 (cv) 0.0381 0.801 
6 Residual sum of squares 0.955 2.842 
7 Predictive sum of squares 53.112 9.325 

The value of r
2
 (0.939) indicates that the MLR 

equation accounts for 93.9% variance in the 

biological activity depicting a quite reasonable fit. 

The cross-validation regression coefficient is 

greater than 0.6. The difference between r
2
 (0.939) 

and r
2
cv (0.801) is comparatively small which 

indicates the good internal predictive ability of the 

model. 

Fischer statistic (f) is the measure of the probability 

of no chance correlation. The value of the F-test 

(89.07) has been found significant. The standard 

error (s=0.34) is significantly low for the regression 

to be significant. It measures the quality of the fit 

of the model. 

Equation 1: Original Equation (By MLR 

Method) 

Y = - 2.580 * X1 – 0.001 * X2 + 0.776 * X3 + 

0.255 * X4 – 0.697 

Equation 2: Standardized Equation (By MLR 

Method)  

Y= - 0.560 * S1 - 0.528 * S2 + 0.845 * S3 + 0.235 

* S4 – 1.915 

Where X1 is Verloop B1 (Subst. 4), X2 is Inertia 

Moment 1 Length (Subst. 4), X3 is Kier ChiV0 

(atoms) index (Subst. 2), X4 is Kier Chi4 (path) 

index (subst.4) and Y is the biological activity. 

Table 4 represents the Correlation matrix showing 

a correlation between the biological activity and the 

molecular descriptors left after data reduction, and 

Table 5 represents jacknife se, covariance se, and t-

value for the molecular descriptors. 

TABLE 4: CORRELATION MATRIX SHOWING CORRELATION BETWEEN THE BIOLOGICAL ACTIVITY 

AND THE MOLECULAR DESCRIPTORS LEFT AFTER DATA REDUCTION 

 X1: Verloop B1       

(Subst. 4) 
X2: Inertia Moment 

1 Length (Subst. 4) 
X3: Kier ChiV0 

(atoms) Index 

(Subst. 2) 

X4: Kier Chi4 

(path) index 

(Subst. 4) 

Log (1/IC50 ) 

Values 

X1: Verloop B1       (Subst. 

4) 
1 -0.048578 -0.092444 -0.17934 -0.49709 

X2: Inertia Moment 1 

Length (Subst. 4) 
-0.048578 1 -0.08263 -0.15681 -0.46068 

X3: Kier ChiV0 (atoms) 

Index (Subst. 2) 
-0.092444 -0.08263 1 0.12889 0.73655 

X4: Kier Chi4 (path) index 

(Subst. 4) 
-0.17934 -0.15681 0.12889 1 0.39979 

Log (1/IC50 ) Values -0.49709 -0.46068 0.73655 0.39979 1 

TABLE 5: JACKNIFE SE, COVARIANCE SE, AND T-VALUE FOR THE MOLECULAR DESCRIPTORS 
Molecular Descriptors Abbreviation Jacknife SE Covariance SE t-value 
Verloop B1 (Subst. 4) X1 0.98321 0.31855 -8.0999 

Inertia Moment 1 Length (Subst. 4) X2 0.00097454 2.0466e-005 -7.6593 
Kier ChiV0 (atoms) index  (Subst. 2) X3 0.0707 0.062936 12.322 

Kier Chi4 (path) index (subst.4) X4 0.082506 0.076224 3.3457 
Constant C 1.7283   
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MLR analysis provided acceptable results with r
2
 = 

0.852 (Training set) and 0.721 (Test set) proposing 

good external validation. 

 
FIG. 1: ACTUAL VS. PREDICTED ACTIVITY PLOT 

FOR THE TRAINING SET COMPOUNDS DERIVED 

FROM MLR ANALYSIS 

 
FIG. 2: ACTUAL VS. PREDICTED ACTIVITY PLOT 

FOR THE TEST SET COMPOUNDS DERIVED FROM 

MLR ANALYSIS 

To confirm the liability of the generated model, the 

PLS analysis was performed using the same data 

set. 

TABLE 6: STATISTICAL TEST SET VALUES OF THE MODEL DEVELOPED BY PLS ANALYSIS 

Statistical 

significance 
Fraction of Variance 

explained, r
2 

r
2
cv Residual sum of 

squares 
Predictive sum of 

squares 
0.99643 0.9276 0.9135 60.28 63.96 

PLS showed perfect results with r
2 

= 0.928 

(Training set) and 0.821 (Test set) which suggested 

good external prediction. This signifies a 92.8 % 

variance (greater than 0.6) in the biological 

activity. A small difference between r
2
 and r

2
cv 

predicts the good internal predictive ability of the 

developed model 
81, 82

. 

Equation 3: Represents the PLS Equation 

(Dimension 1) 

Y = - 2.386 * X1 – 0.0001* X2 +0.704* X3 + 

0.453 * X4 – 0.892 

 
FIG. 3: ACTUAL VS. PREDICTED ACTIVITY PLOT 

FOR THE TRAINING SET COMPOUNDS DERIVED 

FROM PLS ANALYSIS 

 
FIG. 4: ACTUAL VS. PREDICTED ACTIVITY PLOT 

FOR THE TEST SET COMPOUNDS DERIVED FROM 

PLS ANALYSIS 

Further validation was done through ANN. 

 
FIG. 5: ACTUAL VS. PREDICTED ACTIVITY PLOT FOR 

THE TRAINING SET COMPOUNDS DERIVED FROM ANN 

ANALYSIS 
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Best RMS fit was found to be 0.0458 at 398 cycles. 

Net configuration was 4-1-1 and test RMS fit was 

0.0389. 

Verloop B1 (Subst. 4), Inertia Moment 1 Length 

(Subst. 4), Kier ChiV0 (atoms) index (Subst. 2), 

and Kier Chi4 (path) index (subst.4) were the 

inputs and negative log IC50 values were the 

output for ANN model. 

The experimentally determined log (1/IC50) values 

and predicted log (1/IC50) for the compounds of 

training and test set are listed in Table 7 and 8, 

respectively. 

TABLE 7: ACTUAL AND PREDICTED VALUES FOR THE TRAINING SET COMPOUNDS OBTAINED FROM 

MLR, PLS AND FFNN ANALYSIS OF TRAINING SET 

S. no. Comp. Name Actual Activity (log 

1/IC50) 

Predicted Activity 

MLR PLS FFNN 

1 9 -2.093 -2.099 -2.310 -2.034 

2 10 -4.986 -4.977 -4.854 -4.890 

3 12 -2.152 -2.097 -2.308 -2.032 

4 13 -1.913 -2.098 -2.308 -2.032 

5 15 -3.146 -2.817 -2.952 -3.153 

6 16 -5.029 -5.105 -4.999 -5.133 

7 17 -1.707 -1.901 -1.864 -1.747 

8 18 -2.113 -1.805 -1.716 -1.644 

9 19 -1.748 -1.691 -1.485 -1.526 

10 20 -2.587 -0.364 -2.319 -1.015 

11 21 -2.056 -2.097 -2.308 -2.032 

12 22 -1.278 -1.677 -1.455 -1.513 

13 25 -1.431 -1.647 -1.393 -1.484 

14 28 -5.127 -4.762 -4.861 -5.222 

15 29 -1.612 -2.267 -2.467 -2.317 

16 31 -1.924 -1.61 -1.840 -1.391 

17 34 -0.698 -0.969 -1.226 -1.041 

18 35 -0.903 -0.999 -0.805 -1.069 

19 36 -0.778 -0.549 -0.373 -0.958 

20 37 -1.278 -1.608 -1.315 -1.451 

21 38 -1.079 -0.930 -0.665 -1.049 

22 39 -0.845 -0.479 -0.233 -0.948 

23 41 -0.954 -0.733 -0.747 -0.988 

24 42 -1.230 -0.969 -1.225 -1.041 

25 43 -0.778 -0.991 -1.245 -1.044 

26 44 -1.322 -0.972∫∫ -1.228 -1.041 

27 45 -0.698 -0.971 -1.227 -1.041 

28 46 -0.954 -1.011 -1.263 -1.048 

FIG. 6: ACTUAL VS. PREDICTED ACTIVITY 

PLOT FOR THE TEST SET COMPOUNDS 

DERIVED FROM ANN ANALYSIS 

 

FIG. 7: TYPICAL TRAINING AND VALIDATION 

ERROR CURVE 
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TABLE 8: ACTUAL AND PREDICTED VALUES FOR THE TEST SET COMPOUNDS OBTAINED FROM MLR, 

PLS AND FFNN ANALYSIS OF TEST SET 

S. no. Comp. Name Actual Activity Predicted Activity 

MLR PLS FFNN 

1 6 -1.623 -2.116 -2.026 -2.050 

2 14 -1.748 -2.098 -1.824 -2.033 

3 23 -0.954 -1.607 -1.030 -1.450 

4 24 -0.954 -1.600 -1.029 -1.444 

5 26 -4.041 -4.780 -3.654 -5.223 

6 30 -3.778 -2.755 -2.937 -3.498 

7 32 -2.238 -1.524 -1.788 -1.313 

8 33 -1.361 -1.481 -2.228 -1.269 

9 40 -0.903 -0.479 -0.511 -0.948 

DISCUSSION: The first descriptor is the Verloop 

B1 (Subst. 4). It is negatively correlated with 

biological activity. Thus, a decrease in Verloop B1 

value would increase biological activity.  

The second descriptor is Inertia moment 1 length 

(Subst. 4). It is a geometrical descriptor that 

characterizes the mass distribution in a molecule 

and the susceptibility of a molecule to different 

rotational transitions. It is negatively correlated 

with biological activity. Thus, the substituent which 

increases the mass will decrease the biological 

activity. Hence, complex and bulky groups must be 

avoided to have a molecule with increased activity, 

as well as, its beneficial effects.  

The third and fourth descriptors are Kier ChiV0 

(atoms) index (Subst.2) and Kier Chi4 (path) index 

(Subst.4). These are well-known topological 

indices. They explain the atom's identity, bonding 

environment, and the number of hydrogen bonds. 

Precisely they explain the molecular connectivity 

of a molecule. As they are positively correlated, the 

presence of such groups is beneficial for biological 

activity. 

CONCLUSION: QSAR study was successfully 

performed on a series of Dipeptide Nitrile analogs. 

Significant statistical values of MLR, PLS, and 

FFNN indicated the robustness of the model. The 

value of r
2 

of 0.852, 0.928, and 0.962 for MLR, 

PLS, and FFNN (training set) respectively, 

indicated the soundness of the model. Value of r
2
 of 

0.721, 0.821, and 0.606 for MLR, PLS and FFNN 

(test set) respectively indicated better results. 

According to the classical QSAR models presented 

in the present work, the four molecular descriptors 

give predictive information about the overall 

behavior of the molecules and are considered to be 

the important contributors to their biological 

properties.  
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