IJPSR (2021), Volume 12, Issue 11

INTERNATIONAL JOURNAL

Received on 30 November 2020; received in revised form, 03 May 2021; accepted, 25 May 2021; published 01 November 2021

EXPLORING SOME ANTIMALARIAL PLANTS SOLD IN THE MARKET IN LIBREVILLE GABON

M. M. Boukandou^{*1}, S. R. R. R. Aworet¹, L. Mewono² and S. Aboughe-Angone¹

Institut de Pharmacopée et de Médecine Traditionnelle (IPHAMETRA)¹/Centre National de la Recherche Scientifique et Technologique (CENAREST). BP: 5011, Libreville, Gabon.

Groupe de Recherche en Immunologie ², Microbiologie appliquée, Hygiène et Physiologie. Département des Sciences de la Vie et de la Terre. Ecole Normale Supérieure. BP:17009 Libreville, Gabon.

Keywords:

Antimalarial, Ethnobotanical survey, Libreville, Peyrie Market, Plants, Traditional medicine

Correspondence to Author: Marlaine Boukandou Mounanga

Institut de Pharmacopée et de Médecine Traditionnelle (IPHAMETRA)/Centre National de la Recherche Scientifique et Technologique (CENAREST). BP: 5011, Libreville, Gabon.

E-mail: bouk_marlaine@yahoo.fr

ABSTRACT: The increasing microorganism resistance to common antimicrobial drugs constitutes a major public health issue worldwide and particularly in Gabon. The objective of this study was to conduct an ethnobotanical survey among merchants of Peyrie market in Libreville (Gabon) to identify plants or a combination of plants used to treat malaria in traditional medicine. Information was collected by interviewing merchants of the market using a structured questionnaire. Plant samples were identified and authenticated at National Herbarium at the Institute of Pharmacopeia and Traditional Medicine in Libreville, Gabon. A literature review of the collected species was done. Twenty-nine (29) plants were identified, and some of them are often used in combination. Decoction, maceration, and herbal teas were the different methods of preparation. Barks, leaves, and fruits were the most plant parts used. Overall, some of these plants have already been investigated for their antimalarial properties, such as Momordica foetida (Cucurbitaceae) and Enantia chlorantha (Annonaceae). The data also highlighted several chemical compounds in the plants which can be responsible for the antiplasmodial activity described, such as kaempferol, berberine, eugenol, and ascarisin. No study assessing the antimalarial effects of 13 plants like A. klaineana, D. benthamianus or M. monandra was found so far. Also, no data regarding the potential antiplasmodial activity of Amphimas ferrugineus, Amphimas klaineanus, Poga oleosa, and Desmodium salicifolium were available, as well as any information about the chemical compounds present in these species. This study has validated the use of some plants in the treatment of malaria in Gabon.

INTRODUCTION: The increasing microorganism resistance to common antimicrobial drugs constitutes a major public health problem worldwide as it impacts negatively both socioeconomic and healthcare systems $^{1, 2}$.

QUICK RESPONSE CODE		
	DOI: 10.13040/IJPSR.0975-8232.12(11).5848-59	
	This article can be accessed online on www.ijpsr.com	
DOI link: http://dx.doi.org/10.13040/IJPSR.0975-8232.12(11).5848-59		

Globalization, massive use, and malpractices seem to play a role in the occurrence and the spread of drug-resistant microbial strains ³. The concern raises a critical point in areas where healthcare systems are basics and where governments are unarmed against this threat. Besides, in these regions, highly pathogenic microorganisms such as HIV, *Mycobacterium tuberculosis*, enteropathogens viruses, and *Plasmodium falciparum* ⁴ are responsible for high morbidity and mortality rates and contribute to the massive economic burden due to their associated disabilities. In this review, the potential of Gabonese medicinal plants to be a reliable and sustainable source of antiplasmodial molecules is particularly addressed. Why P. falciparum causing malaria? Malaria is, according to the World Health Organization (WHO), one of the deadliest diseases that accounted in 2017 for about 435 000 deaths, with an estimated 219 million cases mainly in Sub-Saharan and Southeast Asian regions ⁵. Pregnant women, infants, children under five years of age, patients with HIV/AIDS, but also non-immune migrants, mobile population, and travelers are at considerably higher risk of contracting malaria, and developing severe disease, than others ⁵. Children are at the highest risk for severe disease and death between six months and five years of age: During this period, children are more vulnerable as they have lost maternal immunity and they haven't yet developed specific immunity to infection.

In the past 15 years, the number of malaria cases has tremendously declined ⁶. This relative success is the consequence of: the conjugated efforts of governments and populations, the wide use of artemisinin-based combination therapy (ACT) and insecticide-treated bed nets. Unfortunately, reports of ACT-drug-resistant strains are increasing worldwide. Hence, a malaria vaccine would have been an important contribution to effective malaria control ^{7, *8, 9}. Yet, for this concern, several candidate malaria vaccines are being set up and are progressing through clinical trials while many more are in pre-clinical development ¹⁰. As an example, the malaria vaccine candidate RTS,S/AS01 has shown moderate efficacy ^{11,} but the further investigation needs to be undertaken to allow his

utilization. Therefore, in the absence of a formally marketed vaccine, special efforts must be done to better control the deleterious effects of malaria in an integrated approach including (i) vector control, (ii) vaccine development, and (iii) search for new molecules active against the parasite.

In Gabon, a holoendemic country with a perineal *P*. falciparum transmission, P. falciparum malaria is the leading cause of hospitalization, especially in children¹². As in most African countries, the Gabonese population uses both conventional and plant-based traditional medicine against malaria. In many countries, a large number of medicinal plants are used to treat malaria and showed great antimalarial potential ^{13, 14, 15}. Thus, many studies related to Gabonese antimalarial plants have been ^{16, 17, 18}. These led by Gabonese researchers investigations must be extended to the systematic evaluation of the antiplasmodial activity of the plants widely used to treat malaria and the identification of the active compounds. At the end of the day, these investigations might validate their utilization by the population and help to manufacture improved traditional treatment.

This study aimed to carry out an ethnobotanical survey with merchants of Peyrie market in Libreville on plants used by Gabonese people to treat malaria.

MATERIALS AND METHODS:

Study Area: Among the several sites where medicinal plants are sold in Libreville (capital), Peyrie Market is one of the biggest markets where a large variety of medicinal plants can be found **Fig. 1**.

FIG. 1: MAP OF GABON INDICATING WHERE ETHNOBOTANICAL SURVEY TOOK PLACE

This study was conducted with twenty-three (23) merchants who provided information about the plants used to treat malaria such as the part(s) of the plant (leaves, bark, roots, *etc.*), mode of preparation (maceration, infusion, decoction, *etc.*) as well as the dosage then, the samples were collected.

Questionnaire Administration: Ethnobotanical data were collected following semi-structured interviews and field observation. The questionnaire was used to interview the traders about their knowledge of the plants used in the treatment of malaria. The questionnaire recorded the date of the interview, name, surname of the merchants, age, sex, and ethnic group. Indications on the vernacular plant name, part(s) used, dosage, duration of the treatment, preparation, administration modes, and other therapeutic uses were also asked.

After the above-mentioned data were collected, plant materials were purchased, identified, and authenticated at the National Herbarium at the Institute of Pharmacopeia and Traditional Medicine in Libreville Gabon. After authentication, a literature review was undertaken to gather knowledge about the selected plants.

Literature Review: Data regarding the plant species cited by the vendors were then gathered using Google Scholar and Scopus. The information needed was the antimalarial activity, antiplasmodial activity, chemical compounds, geographical location, and the traditional uses in other countries. Recent manuscripts describing the *in-vitro* or *in-vivo* study design for antimalarial assessment as well as those reporting on the phytochemical assessment of the studied plants were retained for the study. Abstracts, old manuscripts and manuscripts with a study design not well detailed were excluded from the study.

RESULTS AND DISCUSSION: The twenty-third traders were divided into 22 females and one (1) male aged between 30 and 55 years old. The Ipunu was the most represented language, followed by the Fang. The interviewed had globally a basic primary or secondary level education. Religion was not determined. In Gabon, medicinal plant merchants are mostly women who have the knowledge of plant usage inherited from their parents.

The mode of preparation and the administration route of traditional antimalarial treatment were recorded. The reported preparation modes were mostly maceration and decoction, while the administration modes were oral, bathing, and enema **Table 1**. The major symptoms reported were fever, cold, dizziness, headaches, and to lesser extent, diarrhea. The ethnobotanical survey of medicinal plants used to treat malaria and sold in the market yielded a total of 29 species distributed into 20 families **Table 1**. The Fabaceae family was the most represented with 8 species, followed by the Apocynaceae with 4 species.

Name	Family	Local Language	Composition of the recipe	Posology and Duration of
				the treatment
Momordica foetida	Cucurbitaceae	Mambubulu (Punu)	The crushed fresh leaves of	Drink and bathing morning,
Schumach.			Momordica foetida are	noon and evening for seven
			macerated in water	days
Ocimum gratissimum L.	Lamiaceae	Mesep (Fang)	The crushed fresh leaves of	Drink morning, noon and
		Makadumba (Punu)	Ocimum gratissimum are	evening. Enema (evening)
			macerated in water	for seven days
Chenopodium	Amaranthaceae	Diable	The crushed fresh leaves of	Drink (morning, noon and
ambrosioides L.			Chenopodium ambrosioides are	evening), Bathing (morning
			macerated in water	and evening), Enema
				(evening) for seven day
-Distemonanthus	Fabaceae	Mouvengue (Punu);	The barks of Distemonanthus	Drink and bathing one glass
benthamianus Baill.		Eyene (Fang)	benthamianus and Alstonia	morning and evening during
		Ekouk (Fang)	congensis are boiled or	one week
+ Alstonia congensis	Apocynaceae		macerated in water for 30	
			minutes	
Distemonanthus	Fabaceae	Mouvengue (Punu);	The barks of Distemonanthus	Drink one glass morning,
benthamianus Baill.		Eyene (Fang)	benthamianus and Enantia	noon and evening during
	Annonaceae	Mfôl (Fang);	chlorantha are boiled	one week
+ Enantia chlorantha		Ogowa (Mpongwè)	ormacerated in water for 30	
			minutes	

TABLE 1: ETHNOBOTANICAL INVESTIGATION OF ANTIMALARIAL MEDICINAL PLANTS

Boukandou et al., IJPSR, 2021; Vol. 12(11): 5848-5859.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

<i>Aucoumea klaineana</i> Pierre.	Burseraceae	Angouma (Fang) ; Mukumi (Punu)	Maceration of the fresh barks overnight	Drink and enema morning and evening for third days
Enantia chlorantha Oliver.	Annonaceae	Mfôl (Fang); Ogowa (Mpongwè)	Decoction of the fresh barks for 30 min	Drink one glass morning, noon and evening during one week
Cymbopogon citratus (DC) Stapf.	Gramineae	Ocimetang (Fang)	Maceration of fresh leaves of Cymbopogon citrates and Ocimum basilicum and add the fruit of Citrus limon	Drink one glass morning and evening for four to seven days
Macaranga monandra Müll. Arg.	Euphorbiaceae	Odzic-sol (Fang)	Decoction of the fresh leaves	Drink one glass morning and evening for seven days
Scyphocephalium ochocoa Warb.	Myristicaceae	Soghe (Fang) ; Musuku (Punu)	Decoction of the fresh barks	Drink one glass morning and evening during seven days
Amphimas ferruginas Pierre	Fabaceae	Ngone (Fang) Ikokodi (Bapunu)	Decoction of the fresh barks	Drink one glass morning and evening
Amphimas klaineanus Pierre ex Pellegrin	Fabaceae	Ngone (Fang) Ikokodi (Bapunu)	Decoction of the fresh barks	Drink
Cylicodiscus gabunensis Harms	Fabaceae	Edum (Fang) Muduma (Bapunu, Nzebi)	Maceration of fresh leaves treats the migraine and the decoction of barks treats the fever and is febrifuge	Drink
Harungana madagascariensis Choisy.	Hypericaceae	Atsu (Fang) Mosasa (Nzebi)	Decoction of the fresh barks from <i>Harungana</i> madagascariensis and fresh leaves of <i>Cajanus indicus</i> treat the fever and the febrifuge condition	Drink one glass morning and evening
Picralima nitida (staff) Th & Hel. Dur	Apocynaceae	Ebam (Fang) Dugundu (Eshira)	Decoction of barks is febrifuge	Drink
Ocimum basilicum L.	Lamiaceae	Osim (Fang)	Maceration of fresh leaves treats the headaches and the migraine	Drink one glass morning and evening
<i>Tetrapleura tetraptera</i> (Schumach. & Thonn.) Taub.	Fabaceae	Kwagsa (Fang) Muyaga (Banzani)	Decoction of barks is febrifuge	Drink one glass morning and evening
<i>Pogaoleosa</i> Pierre	Anisophylleaceae	Afo + Ekuk + Ebam + Alloure me bare (Fang)	Decoction of the fresh barks of Poga oleosa + Alstonia congensis + Picralima Nitida with the fruits of Citrus limon during 3 h	Drink one glass morning and evening
<i>Leucanthemum vulgare</i> (Vaill.) Lam.	Asteraceae	Female Marguerite	Maceration of the leaves crushed	Drink one glass morning and evening
<i>Picralima Nitida</i> (staff) Th & Hel. Dur.	Аросупасеае	Ebame + Alloure me bare + Ayinibe (Fang)	Decoction of the fresh barks of <i>Picralima Nitida</i> + <i>Anthocleista</i> <i>nobilis</i> with the fruits of <i>Citrus</i> <i>limon</i> during 1 h	Drink one glass in the morning.
Anthocleistavogellii Planch.	Gentianaceae	Ayinibe (Fang)	Decoction of the fresh barks	Drink one glass in the morning.
Carica papaya L.	Caricaceae	Alola (Fang) Ololo (Mpongwè)	Decoction of the fresh leaves of Carica papaya + Citrus aurantifolia + Cassia occidentalis	2 spoons morning and evening for 4 to 7 days
Alstonia congensis Engl.	Apocynaceae	Ekouk (Fang)	Decoction of the fresh barks	Drink one glass morning, noon and evening during one week.
<i>Aframomumgiganteum</i> (Oliv. & D. Hanb.) K. Schum.	Zingiberaceae	Ndong (Fang) Ndungu-a-tsisi (Nzebi)	Maceration of the raptures of the heart	Drink twice a day for 2 days
Desmodium salicifolium (Poir.) DC.	Fabaceae	Obogbe-nzèn (Fang) Mpépénda (Nzebi)	Decoction of the leaves	3 times per day for one week
Scorodo phloeuszenkeri Harms	Fabaceae	Esun (fang) Mufira (Bapunu) Lévyola (Nzebi)	Decoction of barks from Scorodo phloeuszenkeri + the rapures of the barks from Pentaclethra macrophylla and crushed seeds of Aframomum	Drinking twice per day

			melegueta.	
Naucleadi derrichii De	Rubiaceae	Otoma (Fang);	Infusion of the fresh young	Drink
Wild. & Dur.		Mbilinga	leaves or barks	
		(Mpongwè);		
		Murundi (Bapunu,		
		Nzebi)		
Sarcocephalus esculentus	Rubiaceae	Otoma (Fang);	Infusion or decoction of the	Drink
Afzel. ex Sabine		Mbilinga	fresh young leaves or the barks	
		(Mpongwè);		
		Murundi (Bapunu,		
		Nzebi)		
Drypetes gossweileri S.	Putranjivaceae	Asogmo (fang);	Maceration or decoction of	Drink twice a day
Moore		Muyungu	fresh barks with chilli pepper	
		(Nzebi); Mudjungu	for the fever and also as	
		(Bapunu)	anthelmintic	

Plants cited by different vendors were not recorded twice. Further, the origin of plant specimen and their national geographic distribution was determined. Several species are also found in other regions of Gabon, namely: Mouila (1°52′ 00″S, 11°03′18″ E), Tchibanga (2°55′ 59″S, 10° 58′59″ E) in the southern region; Lambarené (0°42′ 05″S, 10°14′04″ E) in the center, Oyem (1°37′00″N,11° 35′00″ E) in the North and Makokou (0°34′ 00″N,12° 52′00″ E) in the northeastern region.

In this study, some plants such as Momordica foetida, Ocimum gratissimum, Chenopodium ambrosioides, Aucoum eaklaineana, Macaranga monandra, and Scyphocephalium ochocoa were told to be used alone: while othersareoften used in combination such as Distemonanthus benthamianu/Alstonia congensis; Distemonanthus benthamianus/Enantia chlorantha; Cymbopogon citratus/ Ocimum basilicum/Citrus limon. Also, the survey revealed that fresh material, mainly leaves and barks is used. However, other parts of the plants (oil, roots, inflorescence) can be used for the treatment of other ailments.

Simultaneously, a literature review aiming at identifying published research on the recorded plants was done. The literature investigation revealed that out of 29 plants, 16 (Momordica Ocimum gratissimum, Chenopodium foetida. ambrosioides, Alstonia congensis, Enantia chlorantha, Cymbopogon citratus, Ocimum basilicum, and Citrus limon) have been previously assessed for antiplasmodial effect (in-vivo or invitro) and have displayed interesting antimalarial activities Table 2. For the remaining plants (A. klaineana, D. benthamianus, M. monandra, S. ochocoa, A. ferrugineus, A. klaineanus, H. madagascariensis, P. oleosa, L. vulgare, A. giganteum, D. salicifolium, S. zenkeri and D. gossweileri), the antimalarial activity is still to be determined. Additionally, many of the compounds present in some of the cited plants have been elucidated except for Amphimas ferrugineus, Amphimas klaineanus, Poga oleosa and Desmodium salicifolium where no data regarding any phytochemical screening was found so far.

Plants name, voucher and	Other diseases treated	Antimalarial studies	Phytochemical compounds
location in Gabon			
Momordica foetida Schumach.	Antidiabetic, antioxidant,	Anti-malarial activity on the	Phenolic glycosides: eriodictyol-
Simons 334	antibacterial and	multi-resistant clone Dd2 of P.	,5,7,4'-trihydroxyflavanone-,
Estuaire; Moyen Ogooué	antilipogenic	falciparum ¹⁹	kaempferol- and 5,7-
			dihydroxychromone-7-O-β-D-
			glucopyranoside ¹⁹
Ocimum gratissimum L.	Headaches, cough,	Anti-malarial activity against P.	Terpenoids ²⁰
Wilks1282	ophthalmias, otitises,	falciparum ²⁰	
Estuaire; Moyen Ogooué; Ogooué	diarrhea, anthelmintic and		
Ivindo ; Ngounié	antitussive		
Chenopodium ambrosioidesL.	Vermifuge, antispasmodic,	The crude hydroalcoholic	Kaempferol-7-O-alpha-L-
Duparquets.n. (P) det.: Cavaco,	stomachic, and carminatives	extract (HCE) from the leaves	rhamnopyranoside, patuletin,
1963	properties	of Chenopodium ambrosioides	quercetin-7-O-alpha-L-
Estuaire; Ngounié	1 1	could inhibit the parasite	rhamnopyranoside, grasshopper
6		growth in vitro	ketone, 4-hydroxy-4-methyl-2-
		$(IC_{ro} = 25.4 \text{ g/mL})$ and in vivo	cyclobexen-1-one and 4-

E-ISSN: 0975-8232; P-ISSN: 2320-5148

		21	hydroxy-N-[2-(4-hydroxyphenyl) ethyl] benzamide ²²
Alstonia congensis Engl. BernardSRFG 315; Bradley1093 Estuaire; Moyen Ogooué ; HautOgooué ; Ngounié ; Ogooué Maritime	Purgative, galactogen, diarrhea, ulcers, scabies, rheumatism, venereal diseases, cough, yaws and headache	The aqueous extract, the 80% methanol extract and the alkaloid-enriched extract exhibited strong antiplasmodial activity against <i>P. falciparum</i>	Alkaloids and phenols, flavonoids, tannins, saponins and terpenoids ^{24, 25}
Enantia chlorantha Oliver. Bourobou591 Whole Gabon	Jaundice, fevers, tuberculosis, emetic, urinary tract infections, hypoglycemia, typhoid fever, leprosy, hemostatic agent and uterus stimulant	K1 with IC50 values $< 10 \mu$ g/ml and against <i>P.</i> <i>falciparum</i> NF54 A19A with IC ₅₀ values $< 0.02 \mu$ g/ml ²³ The stem bark of <i>E. chlorantha</i> has resulted in the isolation of berberine and protoberberine alkaloids possessing antimalarial effects ²⁶	Berberine and protoberberine alkaloids ²⁶
<i>Cymbopogon citrates</i> (DC) Stapf. <i>Alers100</i> Whole Gabon	Repellent, insecticidal, anti- amoebic, antibacterial, antidiarrheal, antifilarial, antifungal and anti- inflammatory	<i>C. citratus</i> possessed a good antimalarial property and can be used for prophylactic and chemotherapeutic purposes ²⁷	Phytosterols, anthocyanin, amino acids, phenolic compounds, volatile components, fatty acids, fumesol, flavonoids, methylheptenone, L-linanool, furfurol, isopulegol, p-coumaric acid ²⁸
Ocimum sanctum L. Leeuwenberg12534 Estuaire; Moyen Ogooué ; WoleuNtem	Vermifuge, anti-stress, anti- hypolipidemic, antioxidant, antifungal, skin diseases, anti-fertility, anti-cancer and antiviral	Antimalarial activities against Plasmodium vivax and Plasmodium berghei ^{14, 29}	Eugenol, eugenal, urosolic acid, carvacol, linalool, caryophyllene, limatrol, caryophyllene, methyl carvicol, anthocyans ¹⁴
Citrus limon (L.) Osbeck. Ngok Banak1863; van Valkenburg2784 Whole Gabon	Antioxidant and antibacterial.	Lemon decoction demonstrated antimalarial activity in mice infected with <i>P. berghei</i> ANKA through parasites suppression by 39% ³⁰	Caffeoyl N-Tryptophan, Hydroxycinnamoyl-Oglucoside acid, Vicenin 2, Eriocitrin, Kaempferol-3-O- rutinoside, and Ouercetin-3-rutinoside ³¹
Aucoumea klaineana Pierre. Bourobou599 Whole Gabon	Antioxidant, antifungal and antibacterial	(no studies)	Monoterpenoids, δ-3-carene, p- cymene, limonene, terpinolene and α-terpinol ³²
Distemonanthusbenthamianus Baill. BernardSRFG 320; SRFG 409 Whole Gabon	Anti-tuberculosis and antibacterial	(no studies)	Sitosterol 3-O-β-D- glucopyranoside, 4- methoxygallic acid, syringic acid, quercetin, 6"-O- acetylvitexin, quercetin 3-O-β-D- glucopyranoside and apigenin 7- methyl ether 6-C-[β- xylopyranosyl-(1→3)-β glucopyranoside] ³³
Macaranga monandra Müll. Arg. Bourobou1020 Whole Gabon	Antifungal	(no studies)	Two active clerodane- typediterpenes as kolavenic acid and 2-oxo-kolavenic acid ³⁴
Scyphocephalium ochocoaWarb. Simons329 Whole Gabon	Antibacterial, seizure, gonorrhea, sterility and antioxidant properties.	(no studies)	Cyclolignans ³⁵
Amphimas ferrugineus Pierre Breteler 15369 Estuaire; Ngounié ; Nyanga; Ogooué Ivindo; Ogooué Lolo; Moyen Ogooué ; WoleuNtem	Dysmenorrhea, cough, pulmonary infection, gonorrhea and poison antidote	(no studies)	(no studies)
Amphimas klaineanus Pierre ex Pellegrin NguemaMiyono 1785 Estuaire; Ngounié ; Nyanga; Ogooué Ivindo; Ogooué Lolo; Moyen Ogooué ; WoleuNtem		(no studies)	(no studies)
<i>Cylicodiscusgabunensis</i> Harms Moungazi 1628 Estuaire; Ngounié ; Nyanga; Ogooué Ivindo; Ogooué Lolo:	Stomach-ache, migraine, venereal diseases, psoriasis and rheumatism	The antimalarial activity of ethanolic extracts of <i>C</i> . <i>gabunensis</i> bark was confirmed <i>in vitro</i> , with	Epicatechin $(4\beta \rightarrow 8)$ - epicatechin $(4\beta \rightarrow 8)$ -catechin trimer, Procyanidin C-1, Epiafzelechin- $(4\beta \rightarrow 8)$ -

International Journal of Pharmaceutical Sciences and Research

5853

E-ISSN: 0975-8232; P-ISSN: 2320-5148

Ogooué Maritime; WoleuNtem		evidence for phenolic acids, primarily gallic acid and close analogues such as ethyl gallate, likely providing this effect. Further fractionation produced the most potent fraction with a 50% inhibitory concentration of 4.7 μg/ml ³⁶	epicatechin-3-O-gallate, Epicatechin- $(4\beta \rightarrow 8)$ -catechin-3- O- $(4$ -hydroxy)benzoate, 3- $(4$ Hydroxybenzoyl)epicatechin, 3,4,5-Trimethoxyphenyl 6-O- (3,4,5-trihydroxybenzoyl)- β -D- glucopyranoside, Trans-3,5,3',4'- tetrahydroxystilbene-3-O- β -D- glucopyranoside, Ethyl gallate, Gallic acid ³⁶
Harunganamada gascariensis Choisy. Niangadouma 141 Estuaire; Ngounić ; Nyanga; OgoouéIvindo; Moyen Ogooué ; WoleuNtem,; Haut Ogooué ; Ogooué Maritime	Diarrhea, venereal diseases, sore throat, headache, antipyretic, jaundice, asthma, diuretic, antiemetic and ulcers	(no studies)	Anthranoids, anthraquinones, xanthones and triterpenoids, flavonoid, steroid, alkaloid and benzophenone ³⁷
Picralima nitida (staff) Th & Hel. Dur AzizetIssembet 319 Estuaire; Ngounié; Nyanga; OgoouéIvindo; MoyenOgooué; Woleu Ntem; Ogooué Lolo; Ogooué Maritime	Otitis, sterility, hernia, cough, typhoid fever, analgesic, diarrhea, abscesses, jaundice, and vermifuge	Picralima nitida seeds, fruit rind, and stem bark have showed remarkable inhibitory activity against drug resistant clones of <i>Plasmodium</i> falciparum at doses of 1.23-32 micrograms/ml ³⁸	3-hydroxy-9-methoxy-2-[2'(<i>E</i>)- 4'-hydroxy-3'-methylbutenyl]-8- isoprenylcoumestan, 3- hydroxy- 9-methoxy-2-[2'(<i>E</i>)-4'-hydroxy- 3'-methylbutenyl]-8-[2"(<i>E</i>)-3"- methyl-4"- oxobutenyl]coumestan, and 3- hydroxy-9-methoxy-4-[2'(<i>E</i>)-4'- hydroxy-3'-methylbutenyl]-8- [2"(<i>E</i>)-3"- methyl-4"- oxobutenyllcoumestan ³⁹
Ocimum basilicum L. Leeuwenberg 12534 WoleuNtem	Vermifuge, headache, rheumatism, aphrodisiac, cough, dysentery, diarrhea, nephritis, nausea, abdominal cramps, gastro-enteritis, migraine, skin infections, insomnia, depression and exhaustion	The extracts showed IC50 of 68.14 µg/ml (CQ-s) and 67.27 µg/ml (CQ-r) chloroquine (CQ)-resistant (CQ-r) and CQ- sensitive (CQ-s) strains of <i>Plasmodium falciparum</i> ⁴⁰	Stragole, 1,6-Octadien-3-ol, 3,7- dimeth, transalpha Bergamotene, Eucalyptol, Citral, N-Cyano-3-methylbut-2- enamine, cisalphaBisabolene, Levomenthol, alphaPinene, cis- Linaloloxide, Eugenol, Copaene, Humulene, Nerolidol and beta Myrcene ⁴¹
Tetrapleura tetraptera (Schumach. & Thonn.) Taub. Wilks 900 Estuaire; Ngounié ; Nyanga; Ogooué Ivindo; Moyen Ogooué ; WoleuNtem,; Ogooué Lolo; Ogooué Maritime	Cough, cold, antipyretic, vermifuge and emetic	Dichloromethane extracts of <i>Tetrapleura tetraptera</i> used to treat malaria in Gabon, had interesting antiplasmodial activity <i>in vitro</i> against <i>P.</i> <i>falciparum</i> strains FCB (chloroquine-resistant) and 3D7 (chloroquine-sensitive) on fresh clinical isolates ¹⁷	Čardiac glycoside, tannins, phenol, flavonoids, alkaloids, Terpenoids, steroids, phlebotanin, D-fructose, 2- hydroxy-gamma- butyrolacetone, acetic acid, glyceraldehydes, piperazine, octodrine, glycidol and <i>n</i> - decanoic ⁴²
PogaoleosaPierre Wieringa 1287 Estuaire; Nyanga; MoyenOgooué; WoleuNtem	Emetic, wounds, dermatitis, toothache and venereal diseases	(no studies)	(no studies)
Leucanthemum vulgare (Vaill.) Lam.	Not found	(no studies)	1,8-cineole, verbenly acetate, lavandulyl acetate, M- isopropoxyaniliene, α -terpineol, α -amorphene, neryl acetate, caryophyllene oxide, α -cadinol, torreyol, β -guaiene, β -eudesmol, caryophyllenol-II and β - spathuleno ⁴³
Anthocleis tavogelii Planch. Dibata 1051 Estuaire; Haut Ogooué ; OgoouéIvindo; MoyenOgooué ; WoleuNtem,; Ogooué Lolo; Ogooué Maritime	Purgative, diuretic, constipation, abortifacient, leprosy, hepatitis, jaundice, venereal diseases, bronchitis, oedema, abscesses, cicatrisation, antipyretic, stomach-ache and otitis	The extracts exhibited significant dose-dependent chemo suppression of <i>P. berghei</i> ⁴⁴ (47)	Tarennoside, 3- Hydroxydodecanedioic acid, 4R- hydroxy-octanoic acid, 8- oxo- nonanoic acid, Pyrazols (endo-1- methyl-N-(9-methyl-9- azabicyclo[3.3.1]non-3-yl)-N- oxide), and dithiole (3H-1,2-

<i>Carica papaya</i> L. <i>N. Halle 4213</i> Whole Gabon	Vermifuge, rheumatism, coughs, bronchitis, asthma, wounds and abortifacient	Administration of aqueous leaf extract of <i>C. papaya</i> significantly ($P < 0.05$) decreased parasite load in mice	Dithiole-3-thione) ⁴⁵ Flavonoids, tannins, saponins, alkaloids, steroids, terpenes, anthraquinones, glycosides and carbohydrate ⁴⁷
Aframomum giganteum (Oliv. & D.Hanb.) K.Schum. Bourobou 225 Estuaire; Ngounié; Nyanga; Oracoué Iviida: Oracoué Lela	Vermifuge and laxative	and enhanced their survival ⁴⁰ (no studies)	Kaempferol-3,7,4-trimethylether, Quercetin-3,7,30, 4- tetramethylether, Quercetin- 3,7,4-trimethylether ⁴⁸ .
Desmodium salicifolium (Poir.)	Epilepsy, kidney pain,	(no studies)	(no studies)
DC. <i>Scorodo phloeuszenkeri</i> Harms <i>12844</i> Whole Gabon	diarrhea, rheumatism Constipation, vermifuge, rheumatism, cough, headache, bronchitis, urinary tract infection, hernia and aphrodisiac	(no studies)	2,3,5-trithiahexane 5-oxide, 2,4,5,7-tetrathiaoctane 2-oxide, bis-methyl-sulphonylmethane, and bis-(methylthiomethyl) sulfone, 2,3,5-trithiahexane, 2,3,4,6-tetrathiaheptane, 2,4,5,7- tetrathiaoctane, two pentathianonanes, 2,4,5,7,9- pentathiadecane and two hexathiaundecanes ⁴⁹ .
Naucleadi derrichii De Wild. & Dur. Klaine 1600 Estuaire; Ngounié ; Nyanga; Ogooué Ivindo; MoyenOgooué ; WoleuNtem,; Ogooué Lolo; Ogooué Maritime	Fever, diarrhea, diuretic, stomach-ache, anaemia, vermifuge, hepatitis and jaundice	A promising antiplasmodial activity of the crude-extract and those of crude-extract-fractions was demonstrated against <i>Plasmodium falciparum</i> ⁵⁰	Alkaloids, glycosides, saponins, phenolic compounds, tannins, phytosterols, carbohydrates, 3- oxo, Naucledine desoxycordifolinic acid, 3 α, 5 α- tetrahydrodesoxycordifoline, nauclexine, antiarol ^{51,52}
Sarcocephalus latifolius Afzel. ex Sabine Dibata 1091 Ngounié; Nyanga; Ogooué Ivindo; Moyen Ogooué	Fever, diarrhea, dysentery, pain, hypertension, mouth odor, tooth decay, epilepsy and leprosy	The extract exhibited significant dose-dependent antiplasmodial activity in the suppressive and repository tests on <i>Plasmodium bergheiberghei</i> infected mice ⁵³ The methanol and aqueous extracts of different parts of <i>Sarcocephalus latifolius</i> . The aqueous extract of the stem bark of <i>Sarcocephalus latifolius</i> showed the highest antiplasmodial activity (p<0.05) when compared with the untreated, chloroquine standard control and other treatment groups ⁵⁴	Triterpenoid glycosides, ethyl glucoside, monoterpene indole alkaloids, sterol, decanoic acid and its derivatives, 1,2,3- propanetriol, derivatives of benzoic acid (α-Hydroxytoluene, Benzene carboxylic acid, 1- Ethyl-2-nitrobenzene), 3,5- Dihydroxy-6-methyl-2,3-dihydro 4H-pyran-4- one, N-(5-Hydroxy- 7-oxacyclohept-2-Cyl) acetamide, methylene, squalene, phytol, transsqualene, farnesyl acetate and two sugars (β-D- glucopyranose and α-Methyl mannopyranoside) ⁵⁵
Drypetes gossweileri S. Moore Florence 544 Estuaire; Ogooué Ivindo; WoleuNtem	Diarrhea, dermatitis, headache, toothache, pain, rheumatism, aphrodisiac, venereal diseases, fever, ulcers, asthma, swellings, bronchitis, ocular and respiratory problems	(no studies)	6,12-Dihydroxy-13- methylpodocarpa-5,8,11,13- tetraene-3,7-dione ; Friedelin; Friedelane-3.7-dione; glucosinolates; N -β- d - glucopyranosyl- p - hydroxyphenylacetamide, p - dolichandroside A, and β- amyrone ⁵⁶

Nowadays, malaria is still a major global health concern that kills primarily pregnant women and children, especially in developing countries. Although several medications are available for prevention and treatment, many reports on death from malaria are done every year, mainly due to drug resistance. Medicinal plants remain the key source to fight malaria as some antimalarial drugs are plant derivatives such as quinine, chloroquine (*Cinchona* spp), and Artemisinin (*Artemisia annua*) ⁵⁷. In this regard, the plants mentioned in the ethnobotanical survey were subjected to a literature review, and it was found that many of them have shown antimalarial and antiplasmodial activity against several strains of parasites responsible for causing malaria. Indeed, *in-vitro* and *in-vivo* studies

demonstrated that several plants such as *Sarcocephalus latifolius, Picralima nitida, Carica papaya,* and *Tetrapleura tetraptera* cited in this study can be used as potential treatment for malaria caused by *Plasmodium falciparum* and *P. Vivax*^{15, 17, 53}. Besides, Froelich ¹⁹ demonstrated that*M. foetida*has an antimalarial activity on the multi-resistant clone Dd2 of *P. falciparum*. And according to Shekins*et al.* (2014) ²⁷, *C. citratus* possesses a good antimalarial property and can be used for prophylactic and chemotherapeutic purposes, while the essential oil displays an antimalarial potential ⁵⁸.

Amongst the species that were cited to treat malaria in Gabon folk medicine, 17 plant species have displayed in-vitro antiplasmodial and/or in-vivo antimalarial effects Table 2. Additionally, active compounds were isolated from some of these plants, such as kaempferol, berberine, eugenol, or linalool. Moreover, studies indicated that plant extracts from *Momordica* foetida, Drypetes gossweileri, Sarcocephalus latifolius, Carica Tetrapleura tetraptera, Cylicodiscus papaya, gabunensis, and Distemonanthus benthamianus contained sugar and derivatives such as D-fructose, β -D-glucopyranose, and α -methyl mannopyranoside ^{19, 47, 55} which might contribute to the antimalarial activity displayed. Flavonoids were also detected in the studied plants, and compounds such as quercetin and derivatives were successfully isolated from Momordica foetida, Aframomum giganteum, Distemonanthus benthamianus and Citrus limon. Monoterpenes were identified in Chenopodium ambrosioides, Sarcocephalus latifolius, and Aucoumeak laineana extracts. Juma 59 and collaborators demonstrated that sesquiterpene lactones present in the ethanol extract of O. basilicum have antimalarial activities against chloroquine-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. C. ambrosioides phytochemical composition shows the presence of a monoterpene named ascaridole (also known as ascarisin; 1,4-epidioxy-p-menth-2ene) which is a potent inhibitor of *P. falciparum* development

Overall, the present study highlighted the plants previously studied for anti-malaria properties, thus, validating their use in traditional medicine to treat malaria as claimed by the Gabonese vendors.

However, no study related to the potential antimalarial activity has been done yet regarding Distemonanthus benthamianus. Aucoumeak laineana, Scorodophloeus zenkeri, Aframomum giganteum, Leucanthemum vulgare, Harunganama dagascariensis, Macaranga monandra, Drypetes gossweileri, and Scyphocephalium ochocoa, which arealso used in traditional medicine to treat malaria. As such, these plants should be the subject of scientific studies to confirm their antimalarial activities. On the other hand, no information was available in the literature regarding the phytochemical composition and the potential activity against malaria of Desmodium salicifolium, Poga oleosa, Amphimas ferrugineus, and Amphimas klaineanus which were also mentioned as good for treating malaria in Gabon. Thus, investigation of the potential antimalarial activity along with the identification of compounds responsible for the activity must be done to validate the use of these plants.

The investigation of the geographical distribution of the plants revealed that these species can be found in the sub-regions (Cameroon, Congo, and Equatorial Guinea) and also in other countries such as Ivory Coast and Nigeria. Besides, many of these plants are distributed through the whole country such as Carica papaya, Naucleadi derrichii, Picralima nitida or Scyphocephalium ochocoa except for Drypetes gossweileri, Chenopodium ambrosioides, Momordica foetida and Ocimum basilicum which are found only in 3, 2 and 1 regions (Estuaire, Woleu Ntem, OgoouéIvindo or Moyen Ogooué) respectively. The preparation and the administration modes used for malaria treatment were found to be the same in West and Central Africa and different other countries like Ivory Coast, Uganda, Nigeria, and Mexico^{60, 61, 62}. These findings support the fact that, regardless of the region, numerous plants are commonly used to treat the same ailments. The increasing number of studies reporting antimalarial resistance on the one hand, and the low number of available efficacious drugs, on the other hand, call for an urgent search for new antimalarial molecules. But, the fact that at least 15 years are needed for a molecule to complete the 3 phases of clinical research appears to be a major concern to the modern use of medicinal plants. However, it is possible to overcome this situation. Firstly, the development of improved traditional medicine derived from traditional healers' remedies (which are already consumed by the population and which show efficacy and safety) should be preferred to the conventional approach of drug development; secondly, studies must be conducted to evaluate potential synergistic or antagonistic relation between pharmaceutical drugs and medicinal preparations; thirdly, training must be given to traditional healers to improve their comprehension of posology and toxicity. These together may help plant-based to better use of antimalarial preparations by both Traditional African Medicine and modern medicine.

CONCLUSION: Malaria remains a major public health problem in endemic countries, particularly in sub-Saharan countries with tropical and subtropical climates. Some of the plants in this study are also found in other countries (Cameroon, Mexico, Congo, and Equatorial Guinea) and are used for approximately the same diseases and ailments. This shows that the use of medicinal plants in traditional medicine worldwide is frequently the same.

Plants such as *M. foetida*, *O. gratissimum*, *C. ambrosioides*, *A. congensis*, *E. chlorantha*, *C. citratus*, *O. basilicum*, and *C. limon* have been previously investigated as having anti-malarial potential, hence confirming their use in traditional medicine. Further investigations are needed to allow the development of improved traditional medicines (ITM) as described by the traditional healers in order to mimic as much as possible the way the herbal remedy is indigenously used.

The advantages of ITM are that they are not time and resources consuming; moreover they will allow low-income populations to afford cheap and efficient treatments.

It is true that many studies have been done in this direction, but the results obtained with medicinal plants worldwide and the data presented in this study show that the use of medicinal plants is of great importance in managing diseases such as malaria.

AUTHORS' CONTRIBUTIONS: SAA, LM, RRRAS, and MBM performed the experimental studies and drafted the manuscript. SAA and LM

played roles in the writing and editing of the manuscript.

ACKNOWLEDGEMENT: Our thanks go to all the participants of the ethnobotanical surveys including technicians of the National Herbarium of Gabon and the various merchants for their frank collaboration.

CONFLICTS OF INTEREST: The authors declare no conflict of interests.

REFERENCES:

- 1. White A and Hughes JM: Critical importance of a one health approach to antimicrobial resistance. Eco Health 2019; 16: 404-09.
- 2. Mogasale VV, Saldanha P, Pai V, Rekha PD and Mogasale V: A descriptive analysis of antimicrobial resistance patterns of WHO priority pathogens isolated in children from a tertiary care hospital in India. Scientific Reports 2021; 11(5116): 1-7.
- 3. Serwecinska L: Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water 2020; 12(12): 1-17.
- Shen SS, Qu XY, Zhang WZ, Li J and Zhi-Yue L: Infection against infection: parasite antagonism against parasites, viruses and bacteria. Infectious Diseases of Poverty 2019; 8(49): 1-12.
- 5. WHO: World malaria report 2018. Geneva: World Health Organization 2017; 1- 210.
- WHO/UNICEF: Achieving the malaria MDG target; Reversing the incidence of malaria 2000–2015. Geneva: World Health Organization 2015; 40 pages
- Skwarczynski M, Chandrudu S, Rigau-Planella B, Islam MT, Cheong YS, Liu G, Wang X, Toth I and Hussein WM: Progress in the development of subunit vaccines against malaria. Vaccines 2020; 8(3): 1-19.
- Hussien M, Abdel Hamid MM, Elamin EA, Abusofyan HAS, Abdelraheem MH and Mohamed AO: Antimalarial drug resistance molecular makers of *Plasmodium falciparum* isolates from Sudan during 2015-2017. PLoS One 2020; 15(8): 1-14.
- 9. Takala-Harrison S and Laufer MK: Antimalarial drug resistance in Africa: key lessons for the future. Annals of New York Academy of Sciences 2015; 1342: 62-67.
- Mahmoudi S and Keshavarz H: Efficacy of phase 3 trial of RTS, S/AS01 malaria vaccine: The need for an alternative development plan. Human Vaccines & Immunotherapeutics 2017; 13(9): 2098-2101.
- 11. RTS S: Clinical Trials Partnership: Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomized, controlled trial. The Lancet 2015; 386(9988): 31-45.
- Zoleko MR, Koehne E, Kreidenweiss A, Nzigou-Mombo B, Adegbite BR, Dimessa-Mbadinga LB, Akinosho M, Matthewman J, Adegnika AA, Ramharter M and Mombo-Ngoma G: Description of *Plasmodium falciparum* infections in central Gabon demonstrating high parasite densities among symptomatic adolescents and adults. Malaria Journal 2019; 18(1): 1-6.

- 13. Lekana-Douki JB, Bongui JB, OyegheLiabigui SL, Zang Edou SE, Zatra R, Bisvigou U, Druilhe P, Lebibi J, ToureNdouo FS and Kombila M: *In-vitro* antiplasmodial activity and cytotoxicity of nine plants traditionally used in Gabon. J of Ethnopharmacology 2011; 133(3): 1103-8.
- Siva M, Shanmugam KR, Shanmugam B, Venkata SG, Ravi S, Sathyavelu RK and Mallikarjuna K: *Ocimum sanctum*: A review on the pharmacological properties. International Journal of Basic & Clinical Pharmacology 2016; 5: 558-65.
- Teng WC, Wilson C, Rossarin S, Alice O, Han-Kiat H, Russell B, Rénia L and Koh HL: *In-vitro* antimalarial evaluations and cytotoxicity investigations of *Carica Papaya* leaves and Carpaine. Natural Product Communications 2019; 14(1): 33-36.
- 16. Tchatat-Tali MB, Jiatsa-Mbouna CD, Yamthe-Tchokouaha LR, Tsouh-Fokou PV, Tsakem-Nangap JM, Keumoe R, Ngoutane-Mfopa A, Bakarnga-Via I, Gounoue-Kamkumo R, Fekam-Boyom F: *In-vivo* antiplasmodial activity of *Terminalia mantaly* stem bark aqueous extract in mice infected by *Plasmodium berghei*. Journal of Parasitology Research 2020; 1-9.
- 17. Lekana-Douki JB, Oyegue-Liabagui SL, Bongui JB, Zatra R, Lebibi J and Toure-Ndouo FS: *In-vitro* antiplasmodial activity of crude extracts of *Tetrapleura tetraptera* and *Copaifera religiosa*. BMC Research Notes 2011; 506: 1-5.
- Kumulungui BS, Ondo-Azi AS, Mewono L, Otogo-N'nang E, Akagah B, Fumoux F and Traoré A: *In-vitro* behavior of *Plasmodium falciparum* strains by alkaloids and tannins extracted from root of *Mitragyna inermis*, a medicinal plant. International Journal of Current Pharmaceutical Research 2015; 8(1): 24-27.
- Weyamba PA, Zofou D, Efange N, Assobe JCN, Kitau J and Nyiondo M: *In-vitro* and *in-vivo* studies on antimalarial activity of *Commiphora africana* and *Dichrostachys cinerea* used by the Maasai in Arusha region, Tanzania. Malaria Journal 2019; 18(119): 1-6.
- 20. Cox-Georgian D, Ramadoss N, Dona C and Basu C: Therapeutic and medicinal uses of terpenes. Medicinal Plants: From Farm to Pharmacy 2019; 333-59.
- Cysne DN, Fortes TS, Reis AS, de Paulo Ribeiro B, Dos Santos Ferreira A, do Amaral FM, Guerra RN, Marinho CR, Nicolete R and Nascimento FR: Antimalarial potential of leaves of *Chenopodium ambrosioides* L. Parasitology Research 2016; 115(11): 4327-34.
- Song K, Wang HQ, Liu C, Kang J, Li BM and Chen RY: Chemical constituents from *Chenopodium ambrosioides*. Zhongguo Zhong Yao Za Zhi 2014; 39(2): 254-57.
- Cimanga R, Lumpu S, Ehata M, Maya B, Munduku C, Bool-Miting F, Cos P, Maes L, Vlietinck A, Exarchou V, Tuenter E and Pieters L: *In-vitro* and *in-vivo* antiplasmodial activity of extracts and isolated constituents of *Alstonia congensis* root bark. Journal of Ethnopharmacology 2019; 242: 1-6.
- Dike IP, Obembe OO and Adebiyi FE: Ethnobotanical survey for potential anti-malarial plants in south-western Nigeria. Journal of Ethnopharmacol 2012; 144: 618-26.
- 25. Lumpu SN, Lutete GT, Kabangu OK, Kanyanga RC, Apers S, Pieters L and Vlietinck AJ: Assessment of the antidiarrhoeal properties of the aqueous extract, the 80% methanol extract and its soluble fractions of the leaves of Alstonia congensis Engl. (Apocynaceae) in Wistar rats. Journal of Ethnopharmacology 2012; 142: 620-26.
- 26. Nurain IO, Bewaji CO, Abubakar AA, Mustapha A, Ajani EO, Sabiu S, Usman A, Abdulhameed HT and Ahmed SB:

Antimalarial and reno-protective potentials of combined stem bark extracts of *Khaya grandifoliola* and *Enantia chlorantha* in Plasmodium infected mice. Iranian Journal of Toxicology 2018; 12(3): 29-37.

- Shekins OO, Janet OS, Eunice O, Moses DA and Mercy OS: Antiplasmodial activity of aqueous leaf extract of *Cymbopogon citratus* against *Plasmodium falciparum* infected rats. American Journal of Biomedical and Life Sciences 2014; 2: 60-64.
- Oladeji IS, Funmilayo EA, Ayodele DT and Odelade K: Phytochemistry and pharmacological activities of *Cymbopogon citratus*: A review. Scientific African 2019; 6: 1-11.
- 29. Banyal HS, Raksha S and Nisha D: Antimalarial effect of *Ocimum sanctum* Linn. and *Bauhinia variegata* Linn. on *Plasmodium berghei*. Journal of Pharmacy and Biological Sciences 2016; 10: 70-72.
- 30. Shija KM, Nondo RSO, Mloka D, Sangeda RZ and Bwire GM: Effects of lemon decoction on malaria parasite clearance and selected hematological parameters in *Plasmodium berghei* ANKA infected mice. BMC Complementary Medicine and Therapies 2020; 20(24): 1-12.
- 31. Makni M, Jemai R, Kriaa W, Chtourou Y and Fetoui H: *Citrus limon* from Tunisia: phytochemical and physicochemical properties and biological activities. Bio Med Research International 2018; 1-10.
- 32. Obame ELC, Bongui JB, Andzi BT, Ondo JP, Edou EP and Koudou J: Antifungal and antibacterial activities of *Aucoumeak laineana* Pierre essential oil from Gabon. Phytomedicine 2014; 2: 17-21.
- 33. Evina JN, Ngono BDS and Abouem AZA: *In-vitro* antitubercular activity of extract and constituents from the stem bark of *Disthemonanthus benthamianus*. Brazilian Journal of Pharmacognosy 2017; 27: 739-43.
- 34. Martin AS, Erdal B, Ngeh JT, Ikhlas AK, Dewayne MH and David EW: Antifungal clerodane diterpenes from *Macaranga monandra* (L) Muell. et Arg. (Euphorbiaceae). Journal of Agricultural and Food Chemical 2003; 51: 7607-10.
- 35. Ngoua-Meye-Misso RL, Ndong JC, Sima-Obiang C, Ondo JP, Ndong-Atome GR, Abessolo FO and Obame-Engonga LC: Phytochemical studies, antiangiogenic, antiinflammatory and antioxidant activities of *Scyphocephalium ochocoa* Warb. (Myristicaceae), medicinal plant from Gabon. Clinical Phytoscience 2018; 4(15): 1-13.
- 36. Aldulaimi O, Drijfhout F, Uche FI, Horrocks P and Li WW: Discovery, synthesis and antibacterial evaluation of phenolic compounds from *Cylicodiscus gabunensis*. BMC Complementary and Alternative Medicine 2019; 19: 1-11.
- 37. Happi GM, Tiani GLM, Gbetnkom BYM, Hussain H, Green IR, Ngadjui BT and Kouam SF: Phytochemistry and pharmacology of *Harunganamada gascariensis*: mini review. Phytochemistry Letters 2020; 35: 103-12.
- Nwankwo NE, Egbuonu ACC, Joshua PE, Okeke ES, Cosmas S, Arazu AV and Nwodo OFC: Inhibitory effect of ethanol *Picralima nitida* seed extract on malaria parasite. Indo American Journal of Pharmaceutical Sciences 2019; 6(7): 13491-496.
- 39. Kouam J, Mabeku LBK, Kuiate JR, Tiabou AT and Fomum ZT: Antimicrobial glycosides and derivatives from roots of *Picralima nitida*. International Journal of Chemistry 2011; 32(2011): 23-31.
- Murugan K, Aarthi N, Kovendan K, Panneerselvam C, Chandramohan B, Kumar PM, Amerasan D, Paulpandi M,

Chandirasekar R, Dinesh D, Suresh U, Subramaniam J, Higuchi A, Alarfaj AA, Nicoletti M, Mehlhorn H and Benelli G: Mosquitocidal and antiplasmodial activity of *Senna occidentalis* (Cassiae) and *Ocimum basilicum* (Lamiaceae) from Maruthamalai hills against *Anopheles stephensi* and *Plasmodium falciparum*. Parasitology Research 2015; 114(10): 3657-64.

- 41. Falowo AB, Mukumbo FE, Idamokoro EM, Afolayan AJ and Muchenje V: Phytochemical constituents and antioxidant activity of sweet basil (*Ocimum basilicum L.*) essential oil on ground beef from Boran and Nguni cattle. International Journal of Food Science 2019; 1-8.
- 42. Erukainure OL, Onifade OF, Olasehinde TA, Adesioye TA, Tugbobo-Amisu AO, Adenekan SO and Okonrokwoe GI: Ethanol extract of *Tetrapleura tetraptera* fruit peels: Chemical characterization, and antioxidant potentials against free radicals and lipid peroxidation in hepatic tissues. Journal of Taibah University for Science 2017; 861-67.
- 43. Duman E and Özcan MM: The chemical composition of *Achillea wilhelmsii, Leucanthemum vulgare* and *Thymus citriodorus* essential oils. Journal of Essential Oil Bearing Plants 2017; 20(5): 1310-19.
- 44. Gboeloh LB, Okon OE and Udoh SE: Antiplasmodial effect of *Anthoclei stavogelii* on albino mice experimentally infected with *Plasmodium berghei* (NK 65). Journal of Parasitology Research 2014; 1-6.
- 45. Anyanwu PI, Tarfa FD, Shamaki DE and Anyanwu GO: Chemical composition antibacterial and antifungal activities of *Anthoclei stavogelii* Planch root bark extracts. IOP Conf. Ser.: Earth and Enviro Science 2018; 210; 10.
- 46. Okpe O, Habila N, Ikwebe J, Upev VA, Okoduwa SI and Isaac OT: Antimalarial potential of *Carica papaya* and *Vernonia amygdalina* in mice infected with *Plasmodium berghei*. Journal of tropical medicine 2016; 1-6.
- 47. Kashari O, Osesua BA, Danjumma BJ and Udeme AM: Phytochemical and antibacterial activity of *Carica papaya* root extract on some selected pathogens. Continental Journal of Biological Sciences 2017; 10(2): 27-37.
- 48. Amadi SW, Zhang Y and Wu G: Research progress in phytochemistry and biology of Aframomum species. Pharmaceutical Biology 2016; 54: 2761-70.
- 49. Kouokam J, Zapp J and Becker H: Isolation of new alkylthiosulfides from the essential oil and extracts from the bark of *Scorodophloeus zenkeri* Harms. Zeitschriftfür Naturforschung C 2014; 56(11-12): 1003-07.
- Abdulrahman M and Adamu M: *In-vitro* phytochemistry and antiplasmodial activity of leaf extract and fractions of *Naucleadi derrichii*. Earthline Journal of Chemical Sciences 2019: 333-42.
- 51. Isa H, Katsayal UA, Agunu A, Nuhu A, Abdulhamid Z and Bayero: Phytochemical screening and thin layer chromatographic profile of *Nauclea diderrichii* leaf extracts. J of Pure and Applied Scie 2017; 10(1): 281-84.
- 52. Haudecoeur R, Peuchmaur M, Pérèsa B, Rome M, Taïwee GS, Boumendjel A and Boucherle B: Traditional uses,

phytochemistry and pharmacological properties of African Nauclea species: A review. Journal of Ethnopharmacology 2018; 212: 106-36.

- Ettebong E, Ubulom E, Ekpenyong C, Ekong S, Akpan E, Tambari D: *In-vivo* antiplasmodial activities of *Nauclea latifolia*. Asian Journal of Medical Sciences 2014; 6(3): 6-11.
- 54. Ene AC, Ezeji CNGN, Emejulu AA, Ene CU, Okwu GN and Ujowundu CO: Antiplasmodial and antioxidant evaluation of the methanol and aqueous extracts of *Sarcocephalus latifolius*. SciFed Journal of Analytical Biochemistry 2018; 1: 1-9.
- 55. Bolaji O, Oloche JJ, Fasusi ET and Lawal MA: Evaluation of phytochemical constituents and antimicrobial activity of leaves and stem bark extracts of *Sarcocephalus latifolius*. Microbiology Research Journal International 2018; 24(2): 1-10.
- 56. Montaut S, De Nicola GR, Agnaniet H, Issembe Y, Rollin P, Menut C: Probing for the presence of glucosinolates in three Drypetes spp. (*Drypetes euryodes* (Hiern) Hutch., *Drypetes gossweileri* S. Moore, *Drypetes laciniata* Hutch.) and two Rinorea spp. (*Rinoreasub integrifolia* O. Ktze and *Rinoreawoer manniana* (Büttner) Engl.) from Gabon. Natural Product Research 2017; 31(3): 308-13.
- 57. Pan WH, Xu XY, Shi N, Tsang SW and Zhang HJ: Antimalarial activity of plant metabolites. International journal of molecular sciences 2018; 19(5): 1-40.
- 58. Tchoumbougnang F, Amvam ZPH, Dagne E and Mekonnen Y: *In-vivo* antimalarial activity of essential oils from *Cymbopogon citratus* and *Ocimum gratissimum* on mice infected with *Plasmodium berghei*. Planta Medica 2005; 71: 20-23.
- 59. Juma IM, Nour AO, Salah AE and Hongxia H: Evaluation of antimalarial activity of sesquiterpene lactones of Wild Sudanese basil (*Ocimum basilicum* L.) through their in vitro inhibition of dihydrofolate reductase (DHFR). Journal of Biology, Agriculture and Healthcare 2015; 5: 21-27.
- 60. Rosaria A, Claudia Di G and Luca V: Antioxidant activity of extracts of *Momordica foetida* Schumach. et Thonn. Molecules 2013; 18: 3241-49.
- Bénédicta GHKK, Eléonore Y, Salomé KDS, Fernand G, Boniface Y, Joëlle QL, Gilles F, Mansourou M and Georges CA: Chemical variation of essential oil constituents of *Ocimum gratissimum* L. from Benin, and impact on antimicrobial properties and toxicity against *Artemia salina* Leach. Chemistry & Biodiversity 2012; 9: 139-50.
- 62. El Idrissi M, Elhourri M, Amechrouq A, Lemrhari A, Belmalha S and Echchgadda G: Caractérisation chimique des huiles essentielles de *Chenopodium ambrosioïdes* (L.) (Chenopodiaceae) de quatre regions du Maroc (Chemical characterization of essential oils from *Chenopodium ambrosioïdes* (L.) (Chenopodiaceae) from four regions of Morocco). Journal of Materials and Environmental Science 2016; 7: 4087-95.

How to cite this article:

Boukandou MMM, Aworet SRRR, Mewono L and Aboughe-Angone S: Exploring some antimalarial plants sold in the market in libreville gabon. Int J Pharm Sci & Res 2021; 12(11): 5848-59. doi: 10.13040/IJPSR.0975-8232.12(11).5848-59.

All © 2021 are reserved by the International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)