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ABSTRACT: MER kinase is an important tyrosine-kinase receptor that 

is associated with a variety of cancers, including mantle cell lymphomas, 

pituitary adenomas and T-cell acute lymphoblastic leukemia. 

Identification of new MERTK inhibitors assumes crucial importance. 

Only one ligand-based pharmacophore model is reported to date for 

MERTK inhibitors. There are many more molecules with improved 

enzyme inhibitory activity reported since the publishing of this model. 

Because of this fact, we decided to develop a pharmacophore model for 

the MERTK inhibitors to assist in virtual screening using Phase for this 

purpose. Hydrogen bond donors, hydrogen bond acceptors, rings, 

positively ionizable groups, and hydrophobic groups were considered as 

key elements contributing to ligand activity for the pharmacophore 

model. Pharmacophore modelling was followed by extensive validation 

of the developed pharmacophore models. The developed pharmacophore 

model highlighted the importance of the positively ionizable groups and a 

ring structure. We have used these models for database screening to 

arrive at few hits. So findings in this study were proved to be useful in the 

optimization and discovery of MERTK inhibitors with a new scaffold. 

INTRODUCTION: MERTK is a member of the 

TAM (TYRO3, AXL, and MERTK) family of 

receptor tyrosine kinases (RTK) which share 

growth arrest specific-6 (gas6) is a common 

biological ligand 
1, 27, 28, 29

. Other ligands, including 

Protein S, Tubby, TULP-1, and Galectin-3 can also 

stimulate Mer. Under normal physiological 

conditions, Mer mediates the second phase of 

platelet aggregation, macrophage, and epithelial 

cell clearance of apoptotic cells 
2, 3, 4

.  
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It also modulates macrophage cytokine synthesis, 

cell motility and cell survival 
5
. Abnormal 

activation or overexpression of Mer RTK has been 

implicated in the neoplastic progression of many 

cancers such as mantle cell lymphoma, pituitary 

adenoma and T-cell acute lymphoblastic leukemia 

and has been correlated with poorer prognosis.  

Mer is ectopically expressed in most common 

pediatric malignancies such as B-cell and T-cell 

acute lymphoblastic leukemia, but it is not 

expressed in normal mouse and human T- and B-

lymphocytes at any stage of development 
6
. 

Inhibition of Mer by si / sh-RNA knockdown 

sensitizes cells to chemotherapy-induced apoptosis 

and doubles survival in a xenograft model of acute 

leukemia. Similar effects are observed when Mer 

expression is abrogated with shRNA in small-cell 
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lung cancer (NSCLC) cells 
7
. Besides this, the 

treatment of melanoma cells with a Mer Inhibitor 

UNC1062 exhibited effects comparable to shRNA-

mediated Mer Inhibition, including reduced colony 

formation in soft agar and decreased invasion into 

the collagen matrix 
8, 9

. This data indicates that Mer 

is a novel therapeutic target for the treatment of all 

and other cancers that overexpress Mer. MER-like 

RTKs consist of extracellular domains that are 

composed of two tandem N-terminal 

immunoglobulin-like domains (Igs) followed by 

two tandem membrane-proximal fibronectin type 

III-like (FNIII) domains. The intracellular regions 

of TAMs contain a tyrosine kinases domain that is 

highly conserved 
10, 11

. MerTK is a single-pass 

transmembrane protein that transducer extracellular 

signals to intracellular phosphor signaling 

pathways influencing cell survival, migration, 

differentiation, and phagocytic activity.  

Mer can drive prometastatic signaling in tumor 

cells and is over-expressed in a variety of cancer 

types, including melanoma and colorectal cancer, 

lung cancer, breast cancer, ovarian cancer, 

pancreatic cancer, and hepatocarcinoma. Mer 

signaling can also influence tumor-associated 

leukocytes, including macrophages to down-

regulate their anti-tumor inflammatory responses, 

poor prognosis and metastasis. Thus, inhibition or 

genetic silencing of Mer in both cancer cells and 

leukocytes is effectively limited tumor growth and 

metastasis. Mer plays a physiological role in 

efferocytosis, which is the clearing of dying cell 

debris by phagocytic immune cells. MERTK 

genetic mutations are associated with the 

accumulation of such debris, especially in the 

retina, thus contributing to the degenerative eye 

disease retinitis pigmentosa. Mer activity in 

phagocytes mediates processes in infection and 

sterile inflammation, for instance, during 

atherosclerosis. Heterogeneity of Mer expression 

across patients, its role in metastasis throughout the 

body, its presence across a variety of cell types 

including both tumor cells and immune cells, and 

its therapeutic transgenic expression in ophthalmic 

disease motivate developing methods to non-

invasively image at the cellular or subcellular 

resolution 
12, 13.

 Computer-aided drug design 

(CADD) is a very useful tool in rational drug 

design to minimize the time for identification, 

characterization and structure-optimization for 

novel drug candidates. CADD methods can be 

applied to both ligand-based as well as structure-

based drug designs. Ligand-based drug design is an 

indirect approach to facilitate the development of 

pharmacologically active compounds by studying 

molecules interacting with the biological target of 

interest. Step one of any drug design process is the 

identification of suitable target biomolecules 

associated with a disease. Usually, a key protein of 

a biochemical pathway associated with the disease 

state serves as a potential drug target. After 

carrying out LBDD, promising molecules are 

identified being referred to as lead compounds 

which were then designed to inhibit or promote the 

concerned biochemical pathway. The next step in 

the drug discovery process is to optimize the lead 

molecules to maximize the interactions with the 

target biomolecule.  

LBDD plays a crucial role in guiding the lead 

optimization process, where these methods are 

useful in the absence of an experimental 3D 

structure of the target enzyme. Due to the lack of 

an experimental structure, the known ligand 

molecules that bind to the cellular target are studied 

to understand the structural and physicochemical 

properties of the ligands that correlate with the 

desired pharmacological activity. Besides of the 

known ligand molecules, ligand-based methods 

may also include natural products or substrate 

analogs that interact with the target molecule 

yielding the desired pharmacological effects. This 

approach takes advantage of the availability of the 

target 3D structure to identify the nature of the 

target-ligand interaction and the structural 

requirements of the ligand to optimize the 

interaction 
23

. A ligand-based pharmacophore 

attempts to identify the essential chemical features 

of the ligand is required to identify the interactions 

with the biological macromolecules. However, 

these pharmacophoric representations are greatly 

simplified and therefore can‟t explain the complete 

biophysical nature of drug interactions. Virtual 

screening performed using ligand-based 

pharmacophores results in many false positives 

because it does not take into account the intricate 

details about the receptor, such as the shape of the 

binding and interaction site 
25

. Ligand Based 

Pharmacophore generation conventionally begins 

with the ligand preparation and conformation 

generation 
24

.  
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Several studies have revealed that the energy of the 

biological conformer of a particular compound is 

usually well above its local energy minimum. The 

induced-fit theory also explains that molecules 

should rearrange themselves to fit into the active 

site of the protein and energy spent on 

rearrangement is compensated by protein-ligand 

binding. Therefore, no protocol including energy 

minimization could assure the prediction of the 

biological confirmation of small molecules. This 

further limits the applicability of ligand-based 

pharmacophores 
25

. With the large number of VS 

approaches available, the users need to learn which 

one is the optimal method for the target of interest. 

Thus, the objective assessment for all viable 

approaches becomes indispensable 
26

. Because of 

these facts, we have decided to compare the 

robustness of the ligand-based pharmacophore 

model methods to select the most appropriate 

method for virtual screening.
 

The present work aimed to develop pharmacophore 

models for pyridine-pyrimidine analogs which act 

as inhibitors of Mer kinase. Merkinase plays an 

important role by regulating macrophage activity, 

platelet aggregation, enhances sensitivity, cellular 

growth, and cell proliferation. The aim is to 

develop the best pharmacophore model based on 

the QSAR equation. This model can be used to 

design and develop new inhibitors of Merkinase in 

search of effective anticancer therapy. The dataset 

used for Ligand Based Pharmacophore generation 

were as follows: 

RESULTS AND DISCUSSION: 

Ligand Based Pharmacophore Model: Ligand 

Based Pharmacophore were generated using Phase 

(version 20.0.3, Schrodinger, LLC, New York, NY, 

2020) implemented in Maestro 12.5. 

Generation of Ligand Based Pharmacophore 

Model using the Selected Datasets: Above 

Mentioned groups were used for the generation of 

ligand-based pharmacophore models. Common 

pharmacophore hypotheses were generated from a 

set of three to four active ligands in the Pharm Set 

because they contain important structural features 

crucial for binding at the receptor-binding site 
15, 21, 

22
. It is desirable to include between three to seven 

points for pharmacophore generation 
15

. More than 

seven points in a pharmacophore will not be 

desirable because all chemical scaffolds may not be 

able to align exactly during screening and these can 

be probable inhibitors that may get missed 
15

. In the 

find pharmacophore step, we used five minimum 

sites and five maximum sites to generates an 

optimum combination of features common to the 

most active compounds. Five-point pharmacophore 

hypotheses were generated and subjected to 

stringent scoring function analysis. 

Hypotheses Scoring: Among the various 

pharmacophores generated, the hypothesis showing 

the best alignments with the active compounds 

were identified by aligning the hypothesis with 

active compounds and calculating the survival 

score. The survival score function helps in 

identifying the best hypothesis and ranking all the 

hypotheses. The selected hypothesis should 

distinguish between the active and inactive 

molecules.  

Further, to confirm that the pharmacophore 

hypotheses map well with more active than inactive 

features, they were aligned to inactive compounds 

and scored. If inactive ligands score well, the 

hypothesis may be considered to be poor and 

should be rejected since it does not distinguish 

between active and inactive ligands 
15

. 

TABLE 1: SCORE FOR DEVELOPED PHARMACOPHORE HYPOTHESIS 

Title Survival 

Score 

Site Score Selectivity 

Score 

Inactive 

Score 

Adjusted Score Phase Hypo 

score 

DDHRR_1 5.253 0.978 1.991 2.251 3.002 1.315 

DHHRR_1 5.288 0.884 2.055 2.177 3.05 1.314 

DDHRR_2 5.216 0.938 1.995 2.093 3.122 1.313 

DDHRR_3 5.207 0.871 2.001 1.816 3.391 1.312 

DHHRR_2 5.163 0.818 2.061 2.133 3.03 1.31 

DHHRR_3 5.152 0.806 2.046 2.055 3.097 1.309 

DHHRR_4 5.144 0.826 2.042 2.01 3.134 1.309 

DDHRR_4 5.14 0.855 1.983 2.116 3.025 1.308 

DDHRR_5 5.136 0.864 2.001 2.059 3.078 1.308 

DDHRR_6 5.136 0.867 2.001 1.937 3.198 1.308 
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Building QSAR Model: The main purpose of 

developing the QSAR model was to predict the 

biological activities of new compounds whereby 

the generated model would be statistically robust, 

both internally and externally. The dataset was 

divided into a training set and a test set. 70% of 

molecules were taken in the training set and 30% in 

the test set. The co-crystallized ligand was included 

in the training set. Atom-based 3D-QSAR models 

were generated for hypotheses. The QSAR 

parameters were used as the second filter for the 

selection of hypotheses. Only those hypotheses 

were taken for further studies that had Q2>0.7 and 

Pearson R>0.8. 

TABLE 2: SUMMARY OF PHASE 3D-QSAR STATISTICAL RESULTS FOR PHARMACOPHORE MODEL 

Hypothesis SD R
2 

R
CV 

Stability F P RMSE Q
2 

Pearson R 

DHHRR-1 0.1070 0.9949 0.6772 0.624 1011.7 6.56e-29 0.61 0.6969 0.9067 

DDHRR-1 0.1178 0.9934 0.6218 0.636 786.6 1.69e-27 0.57 0.7827 0.9192 
 

Table 3 shows the equation obtained for pyridine-

pyrimidines. Fig. 1-2 indicates the graphs of 

observed v/s predicted biological activity based on 

the 3D-QSAR Statistical results. 

Scatter Plot for Best Hypothesis DDHRR_1 for 
Predicted vs. Experimentally Observed Activities: 
The plot of experimental activity v/s phase 

predicted activity for DDHRR-1 is shown in Fig 

4.9 and 4.10, respectively. After comparing two 

hypotheses, DDHRR-1 was selected as the best 

hypothesis. It has a high value of the coefficient of 

determination (R
2
=0.9934) and variance ratio 

(F=786.6), low value of the standard deviation of 

the regression (SD=0.1178), suggesting that it was 

a statistically significant regression with a great 

degree of confidence. The prediction of the training 

set was a perfect one. Similarly, the test set 

revealed expected better parameters, the high value 

of cross-validated value (Q2=0.7827) and Pearson 

correlation coefficient (Pearson-R=0.9192), low 

value of root mean squared error (RMSE=0.57), 

demonstrating that the prediction of the test set was 

credible. 

These plots exhibit the linear relationship between 

predicted and actual activity. Thus it can be said 

that the model developed is highly successful in the 

prediction of activity test compounds with the least 

variation as indicated by a standard deviation of 

0.1178. 

  
             FIG. 1: TEST SET HYPOTHESIS DDHRR_1          FIG. 2: TRAINING SET HYPOTHESIS DDHRR_1 

Superposition of the Most Active, Inactive, all 

Active, Inactive Compound on the 

Pharmacophore DDHRR_1: The superposition of 

the most active compound, least active compound, 

most fit compound, and all active compounds on 

the best pharmacophore hypothesis DDHRR-1 has 

been given in Fig. 3-6. 
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MATERIALS AND METHODS: 

Generation of Ligand Based Pharmacophore 

Selection of Dataset: 

(A) Combined Dataset Generation and 2D-

Similarity Analysis: Initially, a dataset consisting 

of molecules belonging to different chemical 

classes was used for the generation of ligand-based 

pharmacophore. However, this approach proved to 

be unsuccessful. The pharmacophore hypotheses 

generated by this approach were biased towards the 

chemical class that was used in its generation and 

failed to accurately align the molecules from other 

classes. These hypotheses were found to be 

statistically poor too. Thus, 2D- Similarity analysis 

of these molecules was performed using canvas, 

and Tanimoto coefficients for representative 

molecules from each class concerning the others 

were generated. Thus, only those classes whose 

representative ligands had a Tanimoto coefficient 

of 0.4 and above were used for combining into a 

group. 

(B) Dataset used: Dataset is used for the present 

study belonging to the chemical class of pyridine-

pyrimidine. Biological activities of sets of 

compounds were expressed in terms of pIC50 

whereas the biological activities were expressed in 

terms of pKi, where, IC50 is the concentration of 

the inhibitor producing 50% inhibition.  

In all the models subsequently developed, pIC50 

values were used as the dependent variable. Ki is 

the inhibition constant for the drug; the 

concentration of competing ligand in a competition 

assay which would occupy 50% of the receptors if 

no ligand was present. The compounds from the 

dataset that are used for pharmacophore modeling 

are shown in Table 1. 

FIG. 3: SUPERPOSITION OF THE MOST ACTIVE 

COMPOUND ON THE PHARMACOPHORE DDHRR_1 
FIG. 4: SUPERPOSITION OF THE MOST INACTIVE 

COMPOUND ON THE PHARMACOPHORE DDHRR_1 

FIG. 5: SUPERPOSITION OF ALL ACTIVES OF THE 

DATASET ON THE PHARMACOPHORE HYPOTHESIS 

DDHRR_1 

FIG. 6: SUPERPOSITION OF ALL INACTIVES OF THE 

DATASET ON THE PHARMACOPHORE HYPOTHESIS 

DDHRR_1 
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TABLE 1: PYRIDINE-PYRIMIDINE ANALOGS (46 MOLECULES) 
14

 

S. 

no. 

Structure IC50 

Value 

(nm) 

pIC50 

Value 

(nm) 

Pharm 

Set 

S. 

no. 

Structure IC50 

Value 

(nm) 

pIC50 

Value 

(nm) 

Pharm 

Set 

1 

 

1.7 8.7695  2 

 

18 7.744  

3 

 

17 7.769  4 

 

570 6.244  

5 

 

950 6.022  6 

 

15200 4.818 Inactive 

7 

 

8200 8.200  8 

 

2.8 8.552  

9 

 

3.9 8.408  10 

 

1.7 4.523  

11 

 

30000 4.5228 Inactive 12 

 

12 7.920  

13 

 

18 7.442  14 

 

1.1 8.9586  

15 

 

1.75 8.7695  16 

 

0.70 9.1549 Active 

17 

 

0.69 9.1611 Active 18 

 

3.4 8.4685  
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19 

 

0.69 9.158 Active 20 

 

1.3 8.886 Active 

21 

 

0.81 9.091  22 

 

1250 5.903  

23 

 

1.8 8.744  24 

 

4.5 8.346  

25 

 

18 7.745  26 

 

34 7.468  

27 

 

72 7.142  28 

 

160 6.795  

29 

 

200 6.698  30 

 

1130 5.948  

31 

 

600 6.221  32 

 

30000 4.515 Inactive 

33 

 

2700 5.686  34 

 

540 6.267  

35 

 

170 6.769  36 

 

173 7.301  



Wagh and Wagh et al., IJPSR, 2021; Vol. 12(11): 5905-5915.                      E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              5912 

37 

 

50 7.212  38 

 

19 7.356  

39 

 

380 6.420  40 

 

16500 4.782 Inactive 

41 

 

83 7.080  42 

 

110 6.958  

43 

 

14 7.853  44 

 

320 6.494  

45 

 

220 6.657  46 

 

44 7.356  

 

(C) Ligand Preparation: All molecules were built 

in Maestro 12.5, Schrodinger LLC, New York, NY, 

2020, and prepared using LigPrep 2.5. LigPrep was 

used to convert the two-dimensional structure to a 

three-dimensional structure, generate stereo-

isomers, determine the most probable ionization 

state at user-defined pH of 7.4, neutralize the 

charged structure, add hydrogen, and generate the 

energy-minimized conformers using ConfGen 

(LigPrep version 2.5, Schrodinger) by applying 

optimized potentials for liquid simulations 

(OPLS3e) force field 
16

. 

Methodology: Pharmacophore modeling was 

carried out using Phase Schrodinger 20.0.3, LLC, 

New York. NY, 2020 implemented in Maestro 

12.5. 

Defining the Ligand Set for Model 

Development: The defining of the ligand set (the 

“pharm set”) that was to be used for model 

development was done by setting a threshold. The 

ligand set included some active ligands and 

inactive ligands. The ligands marked as active in 

the Pharm Set column of the Ligands table were 

used to develop the model. The „Activity 

Thresholds‟ option was clicked to set thresholds for 

active and inactive ligands. In the activity 

Thresholds dialog box, a threshold for the active 

ligands and inactive ligands was set. Ligands with 

activity greater than or equal to the active threshold 

were marked as active and included in the pharm 

set. Ligands with activity less than the inactive 

threshold were marked as inactive and included in 

the pharm set. Ligands whose activity lies between 

the thresholds were excluded from the pharm set 
15, 

17, 18, 19
. 

Creation of Pharmacophore Site: In this step, a 

set of chemical structure patterns was used to 

identify pharmacophore features in each ligand. 

Once a feature has been mapped to a specific 

location in conformation, it is referred to as a 

pharmacophore site. Phase  Schrodinger20.0.3, 

LLC, New York, NY, 2020 provides a standard set 

of six pharmacophoric features, i.e., a hydrogen 
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bond acceptor (A), a hydrogen bond donor(D), a 

hydrophobic group (H), and a negatively ionizable 

(N), positively ionizable (P), and aromatic ring (R) 

to define the chemical features of ligands 
15, 17, 18, 20

.
 

Generation of Common Pharmacophore 

Hypothesis: Hypotheses were generated by 

systematic variation of the number of sites and the 

number of matching active compounds. Three to 

seven sites could be specified for the generation of 

the common pharmacophore hypothesis. However, 

an optimum number of sites were to be specified as 

each site represents 2-3 kcal/mol interaction with 

the receptor. Hence, a five-point common 

pharmacophore hypothesis was identified from all 

the conformations of the active ligands having an 

identical set of features with a very similar spatial 

arrangement. The pharmacophores that were 

common in all the active compounds were 

identified using a tree-based partitioning algorithm 

and studied further. Maximum tree depth specifies 

the number of binary partitioning steps used to sort 

the pharmacophore into similar groups. A tree 

depth of five was used to identify the common five 

variant pharmacophores. A minimum intersite 

distance of 2.0 °A was used. Minimum Intersite 

distance specifies the minimum distance allowed 

between two features. If the features in the ligand 

were closer than this distance, the hypothesis was 

rejected. The common pharmacophore hypothesis 

was considered, which indicated all five sites 

common to all molecules 
15, 17-19

. 

Scoring Pharmacophore Hypothesis: The scoring 

procedure helps in ranking of the different 

hypotheses to yield the best alignment of the active 

ligands using an overall maximum root mean 

square deviation value of 1.2 °A with default 

options for distance tolerance. Thus, it helps in 

making a rational choice regarding which 

hypothesis is more appropriate for further 

investigation. The hypotheses generated were 

scored and ranked to find out the best possible 

hypothesis. The scoring for active and inactive was 

done using the default survival score weighting 

factors (vector score=1.0, reference ligand relative 

conformational energy = 0.0, and reference ligand 

activity = 0.0). There were several hypotheses of a 

given variant that looked very much alike and had 

very similar scores. In this situation, it was useful 

to cluster these hypotheses, using a suitable 

clustering algorithm, and showing only a single 

representative from each cluster. Complete 

Clustering of similar hypotheses was done and the 

hypotheses were visualized by using „Highest 

Average Similarity‟ mode from the view clusters 

dialog box 
15, 17, 18, 19

. 

Building QSAR Models:
 
The main purpose of 

developing the QSAR model was to predict the 

biological activities of new compounds whereby 

the generated model would be statistically robust, 

both internally and externally. The dataset was 

divided into a training set and a test set. 70% of 

molecules were taken in the training set and 30% in 

the test set. Atom-based 3D- QSAR models were 

generated for hypotheses. The QSAR model 

partitions the space occupied by the ligands into a 

cubic grid. Any structural component can occupy 

part of one or more cubes. A cube is occupied by 

an atom or a feature if its centroid is within the 

radius of the atom or feature. You can set the size 

of the cubes by changing the values in the Grid 

spacing text box. The allowed range is 0.5 °A to 

2.0 °A. The default grid spacing of 1.00 °A was 

used. The regression was done by constructing a 

series of models with an increasing number of PLS 

factors. The accuracy of the models increases with 

an increasing number of PLS factors until over-

fitting starts to occur. The maximum number of 

PLS factors is N/5, where N is the number of 

ligands in the training set.  

Thus, the Maximum number of PLS factors used 

was 3 for pharmacophore built using the pyridine-

pyrimidine class of compounds. The robustness of 

the developed pharmacophore hypotheses was 

internally validated by statistical parameters, 

including the squared correlation coefficient (R
2
), 

q
2
 (R

2
 for test set), the standard deviation of 

regression, Pearson's correlation coefficient 

(Pearson‟s R), and variance ratio (F) 
15, 17, 18, 19

. 

CONCLUSION: The present work aimed to 

develop pharmacophore models for pyridine-

pyrimidine analogs which act as inhibitors of 

Merkinase. 10 models were generated and 

validated using atom-based QSAR. DDHRR-1 was 

selected as the best pharmacophore model based on 

the QSAR equation as well as the ability of 

pharmacophore to differentiate between active and 

inactive, based on site matches.  
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This model can be used for database screening to 

design and develop new inhibitors of Mer kinase in 

search of effective anticancer therapy. 
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