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ABSTRACT: Protein-protein, as well as protein-substrate interactions, 

play an important role in regulating specific biological functions like 

signal transduction, apoptosis, gene regulation, and immune response. 

These play a major role in drug discovery applications and can be used as 

molecular targets to stop disease development at the molecular level. 

Thus, understanding the biological mechanism of protein is an integral 

part of any computational study. Moreover, these interactions can be 

manipulated through protein engineering to address industrial 

applications. As part of the protein engineering strategy, the first step is 

the determination of hotspots. Hotspots are defined as positions in the 

amino acid sequence that can be targeted for mutagenesis to improve the 

catalytic activity or stability of an enzyme. The commonly-used method 

for determining hotspot residues is computational alanine scanning (CAS) 

mutagenesis experiments, which are computationally expensive and time-

consuming. In the current study, we aim to develop a protocol to predict 

hotspots using a computationally less costly method. We have used two 

published datasets to cross-validate our method. Both the datasets belong 

to a different enzyme class. The key element here is that the substrate is 

present in the active site of the enzyme. The nearby residues present 

within a distance of 5 Å from the substrate were also considered during 

prediction. This helped in determining the exact residues responsible for 

the majority of performance on protein’s characteristic frequency. The 

objective was to predict hotspots with more precision and sensitivity 

while demanding limited computing resources. 

INTRODUCTION: Proteins are biomolecules that 

play an important role in cellular metabolism. They 

are comprised of amino acids.  
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Based on the sequence of amino acids, proteins 

differ from one another. This usually results in 

protein folding into a 3-dimensional structure. The 

3D structure of the protein determines its activity. 

Signal transduction, apoptosis, gene regulation, and 

immune response are biological functions mediated 

by protein-protein or protein-substrate interaction 

Proteins 
1
. It acts as a biological catalyst and carries 

out many chemical reactions by lowering its 

activation energy and increasing its reaction rate. 

With the advent of green chemistry, enzymes have 
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been increasingly used as a biocatalyst in the 

pharmaceutical as well as different industries 

because of their various advantages. These include 

high stereoselectivity, mild reaction conditions, and 

environment-friendly conditions. No toxic waste is 

generated, which may be hazardous to human life 

or the environment. However, natural enzymes do 

not necessarily fulfill the process requirements and 

need further industrial-scale production refinement. 

It is imperative that the natural enzyme may have 

some inadequacies such as substrate/product 

inhibition, low stability, or low activity, limiting 

enzymes in industries. Enzyme engineering is thus 

used to tailor the enzymes for specific reactions. 

Enzyme engineering has gained a lot of attention of 

late, and various protein engineering methods have 

emerged for the de novo designing of peptides and 

proteins following both experimental and 

computer-guided approaches. Protein engineering 

is an emerging technique used to design new and 

improved protein structures using site-directed 

mutagenesis or random mutagenesis.  Some of the 

applications of protein engineering can be seen in 

industries like food processing, brewing, detergent, 

textile, cosmetics, leather, pharmaceutical, 

biotechnology, etc.  

For example, in the pharmaceutical industries, 

enzymes are increasingly being used to 

manufacture active pharmaceutical ingredients to 

meet the market demand due to the wave of 

biocatalysts. The blockbuster drug sitagliptin is one 

such example in which protein engineering was 

attempted to increase the efficiency of enzymes and 

reduce the cost of the manufacturing process. 

Successful enzyme engineering helped in 

decreasing the number of chemical steps required 

for the synthesis of sitagliptin drugs. Another 

example is that of cellulases which are of interest in 

biofuel production. These are engineered for 

improved thermostability to scale up with industrial 

reaction conditions. In-plant biotechnology, 

transgenic plants are developed with the help of 

protein engineering to improve the yield. As 

enzymes are used in almost all these industries, 

they are engineered for improved catalytic activity, 

stability, and solubility. In recent years numerous 

protein engineering tools have emerged for the 

improvement of existing biocatalysts or their 

adaptation to novel substrates 
2
. Conventional 

protein engineering techniques can be grouped into 

four categories: 3 (i) comparison of the protein 

sequence with a less homologous protein and 

mutation of selected amino-acid using site-directed 

mutagenesis. (ii) site-directed mutagenesis in which 

mutation is introduced at a specific position of 

protein sequence after studying the 3d structure of 

the protein. (iii) random mutagenesis in which 

mutations are introduced randomly in genes of an 

organism and (iv) SCHEMA, a structure-guided 

approach with recombination of stabilizing 

fragments. Random mutagenesis and SCHEMA are 

based on the expression of enzymes in 

microorganisms and high-throughput screening 

methods. 

However, site-directed mutagenesis requires 

detailed knowledge of protein, and it is difficult to 

predict the effect of various mutations. On the other 

hand, random mutagenesis is time-consuming 

because a lot of experiments have to be performed 

to obtain the desired mutation. Another caveat of 

random mutagenesis is that any unwanted mutation 

can lead to undesirable functions in the protein. To 

mitigate these challenges, a new method of 

screening evolved, which is based on 

computational chemistry. The conventional 

methods are expensive compared to the 

computational method of protein engineering; 

computational methods are fast and accurate 

compared to the conventional methods. 

The computational approach comprises techniques 

like molecular dynamics, quantum mechanics 

(Schrödinger equation), molecular mechanics 

(Newton’s law), and statistical methods 

(Quantitative Structure-Activity Relationship). For 

example, with the help of computational chemistry, 

we can perform “in-silico” trials in place of 

experiments that are too expensive to perform in 

laboratories.  

Computational chemistry is a robust technique used 

in protein engineering, drug design, protein 3D 

structure prediction, and modelling of transition 

state to understand complex reaction mechanisms. 

The computational protein design approach utilizes 

molecular modelling to understand the structure-

function relationship of a given protein sequence. 

Mutations are carried out on a high-resolution 

crystal structure to optimize the physicochemical 
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properties of an enzyme, such as stability or 

activity. In protein engineering experiments, 

computational chemistry is mainly used to predict 

hotspots and engineer enzymes. Hotspots4 are 

defined as non-essential amino acid residues 

targeted for mutagenesis to improve an enzyme's 

catalytic activity or stability. Computer-driven 

strategies can screen an astronomically large 

number of sequences covering a wide variety of 

properties and functionalities compared to any 

existing experimental approach and thus, can be 

used for the creation of focused libraries for 

experimental validations. However, in-silico 

protein engineering efforts are conceptually 

intricate, difficult to grasp, and rely heavily on 

user’s expertise to assimilate a myriad of factors 

that together influence the stability and uniqueness 

of a protein structure. Moreover, the steps involved 

in successfully executing various computational 

methods and tools to address specific protein 

engineering problems are tedious, cumbersome, 

and not free from human errors. To address these 

challenges, we have come up with list of methods. 

In this study, an attempt has been made to develop 

a robust protocol that is reliable, inexpensive, and 

requires less computational time to predict accurate 

hotspots for enzyme engineering.  

The methods used here are evaluated based on 

some evaluation measures to show the efficacy of 

our model. If any method has to say best, it should 

recover the true hotspot from a number of 

mutations attempted. The percentage recovery was 

calculated based on the ratio of a number of trials 

to the number of sample datasets. The number of 

trials was determined using the ratio of True 

positive to the total number of mutations. Sampling 

was calculated based on the total score to the total 

number of residues present in the complex 

multiplied to percentage 
5
. The percentage recovery 

should be above the random prediction random 

line. The recovery was measured using the formula 

given below based on which methods are evaluated 

Recovery % = (Trial/Sampling) *100, Where, Trial = True 

Positive/ Total No of mutations, Sampling = [Top score 

(number of trials)/Total number residues] * 100 

The Percentage recovery plot predicts the reliability 

of the method. To evaluate the accuracy of hotspot 

prediction methods, we adopted three evaluation 

measures to show the efficacy of our model. These 

include sensitivity (Sen), precision (Prec), and F-

measure F1. 

Sen = TP/ TP + FN, Prec = TP /TP + FP, F1 = 2 ×Prec × Sen / 

Prec + Sen 

  

 
FIG. 1: MODEL SYSTEMS USED FOR THE STUDY. A SHOWS CRYSTAL STRUCTURE OF TRANSAMINASE 

ENZYME FROM ARTHROBACTER SP. (PDB ID: 3WWI). B SHOWS THE SUBSTRATE PRO-SITAGLIPTIN. C 

SHOWS THE KETOREDUCTASE ENZYME FROM LACTOBACILLUS KEFIR (PDB ID: 4RF2). D SHOWS THE 

SUBSTRATE 1-(3-HYDROXYPHENYL)-2-(METHYLAMINO) ETHENONE(HPMAE) USED FOR THE 

COMPUTATIONAL STUDY 
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Where, TP (true positive) is the number of 

correctly-predicted hotspot residues; FP (false 

positive) is the number of false positives 

(incorrectly over-predicted non-hotspot residues); 

TN (true negative) is the number of correctly-

predicted non-hotspot residues; and FN (false 

negative) is false negative, i.e., incorrectly under-

predicted hotspot residues. The fraction of true hot 

spots among the set of residues predicted to be hot 

spots is called Precision (P).  

Sensitivity (S) is the fraction of correctly identified 

hot spots relative to all those present in the data set. 

F1 score is a weighted average of the precision and 

sensitivity 
6, 7, 8

. As most of the computational 

approaches focus on improvement in catalytic 

activity, our protein engineering study mainly 

focuses on the progress of the enzymatic activity. 

Two published datasets have been selected for the 

study. The validity of the method was checked 

across two enzyme classes; Transaminase (PDB 

ID: 3WWI) and the Keto reductase enzyme family 

(PDB ID: 4RF2), as shown in Fig. 1. 

Materials and Methods: 

System Preparation: 

Protein Structures, Cofactors and Substrates: 

X-ray crystal structure of 3WWI and 4RF2 were 

obtained from the Protein Data Bank (PDB) 
9
. The 

substrates used for the study are pro-sitagliptin and 

1-(3-hydroxyphenyl)-2-(methylamino) ethenone 

(HPMAE), respectively. As transaminase is a 

Pyridoxal-5’phosphate-dependent enzyme (PLP 

enzymes), they contain a cofactor PLP in both 

chains. On the other hand, ketoreductase is a 

Nicotinamide-dependent adenine dinucleotide 

phosphate (NADPH) enzyme using NADPH as a 

hydride reductant. KRED is active in tetrameric 

form, whereas transaminase is active as a dimer.  

Sequences were obtained after using Basic Local 

Alignment Search Tool (BLAST) 
10

.  to obtain a 

series of homologous sequences for both the 

enzymes (Ketoreductase and Transaminase). 

Multiple sequence alignment was performed using 

Jalview software 
11

. 

Datasets: The dataset consists of enzyme-

complexes whose structures have been resolved 

through X-ray crystallography. Structures were 

obtained from the Protein Data Bank (PDB) 
1
. The 

substrates used for the study are pro-sitagliptin and 

1- (3-hydroxyphenyl)-2-(methylamino) ethenone, 

respectively. As transaminase is a Pyridoxal-

5’phosphate-dependent enzyme (PLP enzymes), 

they contain a cofactor PLP in both chains. Enzyme 

activity data for transaminase was collected from 

previous works of Savile et al. In total 32 mutations 

are reported for transaminase and tabulated in 

Table 1. The enzyme is active in dimer form. 

TABLE 1: TRANSAMINASE HOTSPOT POSITION 

LIST WITH MUTATED AMINO ACIDS 

S. no. Position Mutation 

1 S8 P 

2 Y26 Y 

3 Y60 F 

4 L61 Y 

5 H62 T 

6 V65 A 

7 V69 T 

8 D81 G 

9 M94 I 

10 I96 L 

11 F122 M 

12 S124 T 

13 S126 T 

14 G136 F 

15 E137 E 

16 Y150 S 

17 V152 C 

18 A169 L 

19 T178 T 

20 V199 I 

21 A209 L 

22 G215 C 

23 G217 N 

24 S223 P 

25 L269 P 

26 L273 Y 

27 T282 S 

28 A284 G 

29 P297 S 

30 I306 V 

31 S321 P 

32 Q329 Q 
 

On the other hand, ketoreductase is a 

Nicotinamide-dependent adenine dinucleotide 

phosphate (NADPH) enzyme using NADPH as a 

hydride reductant. Enzyme activity data for 

ketoreductase was obtained from Codexis Patent 
3, 

12
.  

In total 19 mutations are reported in the patent for 

ketoreductase and tabulated in Table 2. It is active 

in tetrameric form. The accuracy of predictions was 

tested for single point mutations for both the 

systems. 
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TABLE 2: KRED HOTSPOT POSITION LIST WITH 

MUTATED AMINO ACIDS 

S. no. Position Mutation 

1 T2 S 

2 I11 L 

3 A64 V 

4 T76 I 

5 V95 M 

6 S96 L 

7 V99 L 

8 E145 A, 

9 F147 L 

10 V148 I 

11 T152 A 

12 L153 M 

13 S159 T 

14 Y190 C,G 

15 D197 A 

16 A202 F 

17 E200 P 

18 M206 C 

19 Y249 F 
 

Docking: In order to understand the enzyme-

substrate interaction, substrate pro-sitagliptin was 

docked into the active site of the Transaminase 

protein (in place of PLP). The distance between N2 

of PLP & C8 of the substrate is 2.83 Å. For KRED 

protein, the substrate is docked in the active site of 

protein with the presence of cofactor NADPH, and 

the distance of between C4N of NADPH and C=O 

of the substrate is 3.2Å. Docking is performed by 

Auto Dock 4.0 program 13 using the empirical free 

energy function and the Lamarckian Genetic 

algorithm 
14

.  

For the ligand, Gasteiger partial charges are used 

and the non-polar hydrogens are conjoined. The 

grid map is calculated using Auto Grid and the grid 

box dimension was set to 50* 48 *76 for 

transaminase protein and 100* 86* 88 for KRED. 

Out of 50 docked poses, the best pose was selected 

based on binding energy and distance between 

cofactors and the substrates. After docking, the 

best- conformation of the substrate was considered 

for the next step of the molecular dynamics study. 

MD Simulation: Parameters for substrates and 

cofactors were generated using Amber Tools 
4
. 

Partial RESP15 charges were generated using 

HF/6-31G*16 methods using GAMESS-US 

software17. Molecular dynamics simulations were 

performed using GROMACS-2019.1 version 
8, 9

 

(Abraham et al., 2015); (Van Der Spoel et al., 

2005) using Amber99SB force field 20 and TIP3P 

water model 
21

. The protonation state of the 

enzyme was predicted based on PDB2PQR server 

22 at pH 7 and temperature 300K. The coordinate, 

restraints and topology files for ligand, protein, and 

protein-ligand complex were generated from the 

PQR file. The enzyme complex coordinates were 

solvated in-silico using the TIP3P water model, 

using a cubic box of dimension 1.2 with periodic 

boundary conditions.  

Neutralizing ions were added to obtain a net zero 

charge on the system composed of approximately 

seventy thousand atoms. First, Systems were 

energy minimized. Subsequently, the systems were 

equilibrated for 500 ps in NVT and 500 ps NPT 

ensembles. During the equilibration period, 

positional restraint was applied to cofactor, 

substrate fatty acids, and protein backbone. Finally, 

100 ns NPT simulation (production run) was 

performed at temperature 300 K and pressure 1 atm 

without positional restraint for both the systems.  

Hotspot Analysis: The sequence of proteins was 

obtained using BLAST algorithm against the non-

redundant database for multiple sequence analysis. 

Using the Jalview11 tool, the consensus sequence 

was checked for each amino acid, and based on 

consensus percentage hotspot residue was selected 

(less conserved amino acids have less consensus 

percentage). After sequence-based hotspot 

prediction, structure-based hotspot analysis was 

done to the protein substrate complex with 

cofactors in the proteins.  

When the substrate is in the active site, it will make 

contacts with the nearby residues. All kinds of 

direct interactions like polar and non-polar, 

favourable and unfavourable contracts were 

assumed to be a hotspot. The contact analysis was 

done with the help of Chimera 
23

.  

After structure analysis energy-based method was 

used for hotspot analysis. For energy analysis gmm 

pbsa tool 24 was used to calculate per residue 

binding energy. In the MM-PBSA approach, 

calculation of the binding free energy (ΔGbind) 

between a protein and a ligand can be performed 

as: 

Δ Gbind = Δ H − T Δ S ≈ Δ EMM + Δ G sol − TΔS, ΔEMM 

= Δ Einternal + Δ Eelectrostatic – Δ EvdW, ΔGsolv = Δ 

Gelsolv+ ΔG vdWsolv 
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Where, the total gas phase energy (sum of the Δ 

Einternal + Δ Eelectrostatic + Δ EvdW) on the 

binding of MM energy is shown as ΔEMM, the 

free energy of solvation as Δ Gsolv and the entropy 

contribution as TΔS.  Electrostatic solvation energy 

term is computed in a continuum solvent using 

Poisson-Boltzmann model 
25

. If the binding energy 

value is negative, it favours complex formation in 

water; positive value denotes unfavourable binding. 

Based on this hypothesis, hotspot residues were 

selected, which destabilized complex formation.  

The cross-correlation between each residue was 

considered for predicting how each residue or 

group residue are interconnected for the movement 

of the protein. If any one of the residues is mutated, 

then corresponding residues that are interconnected 

will impact the movement of the protein. The 

cross-correlation between each residue was 

considered for predicting multiple hotspots and 

calculated by using Wordom tool
 13

. Wordom 

calculates the correlations of atomic displacements 

along MD trajectory. It implements two different 

algorithms; an algorithm called dynamic cross-

correlation (DCC), a well-established and 

straightforward method calculatinglation of the 

normalized covariance of atom/residue position, 

was used. DCC represents the extent of 

atom/residue displacement correlation within a 

range that goes from 1.0 to -1.0; where 1.0 

indicates completely correlated (same period and 

phase) and -1.0 relates completely anti-correlated 

(same period and opposite phase) displacements. 

Linear mutual information (LMI) is a second 

algorithm, and it is computationally more 

expensive compared to DCC.  

The performance of traditional hotspot prediction 

methods is based on precision, specificity and 

sensitivity. Precision is defined as the measure of 

consistent results obtained after a number of 

experiments. Specificity is defined as the measure 

of correctly identifying false positives. Sensitivity, 

on the other hand, is defined as the ability to 

correctly predict the maximum number of true 

positives.  Most of the computational methods used 

till date have low precision and accuracy. Even 

sensitivity remains fairly low to overcome these 

challenges; we have developed a novel method of 

hotspot prediction, which has improved precision 

and sensitivity. 

RESULTS AND DISCUSSION: As mentioned 

above we have used two data sets to validate our 

protocol.  The first dataset corresponds to 

ketoreductase and the second data from Codexis 

patent 
1
2. The transaminase data was based on the 

previous works of Savile et. al. 17 Crystal 

structures of keto reductase from Lactobacillus 

kefir 27 (pdb id: 4RF2) and transaminase from 

Arthro bacter sp 
28

. (pdb id: 3WWI) were used for 

predicting hotspots. Both the enzymes have 

cofactors NADPH and PMP, respectively. The 

substrate used for the study was HPMAE and 

prositagliptin, respectively. 

As experimental data were available for both the 

enzymes, we have included these datasets in our 

study. The KRED structure selected for our study is 

a dimer structure (500 amino acids) and have total 

250 amino acids for monomeric structure, and 

NADPH as a cofactor for substrate where V95, 

S96, E145, T152, L153, and Y190 are in the 

catalytic region; F147, V148, M206, and Y249 are 

in the path of substrate entry/exit; A64, T76, S159, 

D197, V99, E200, and A202 are in the surface 

region of the protein. I11 and A64 are in cofactor 

interacting residues. T2 residue is not available in 

the crystal structure as the initial 2 amino acids are 

missing for the obtained crystal structure.  

The Transaminase system has a dimeric structure 

with 644 amino acids (322 amino acids for 

monomeric) and PMP as a cofactor to the pro-

sitagliptin substrate, and a total of 32 hotspots are 

reported for transaminase. Y60, L61, H62, V65 are 

found in the intermediate part of B-chain but not in 

active site and; Y26, D81, M94, I96 are in the 

surface region & not in active site; V69, S124, 

S126, Y150, V152 are in A-chain and near to 

active site; T178, G215, G217, L269, L273, T282, 

P297, I306, S321, Q329 far away from active site 

and & surface region; F122 and A284 are in the 

small binding pocket and V199, S223 are in the 

large binding pocket. G136, E137, A169, and A209 

are key residues that enable substrate entry/exit. S8 

residue is not available in the crystal structure as 

the initial 8 amino acids are missing for the 

obtained crystal structure. These mutations are 

incorporated in the structure to increase the activity 

towards the respective substrates. A detailed 

description of the data set, individual mutations, 

and clustering criteria has been discussed in earlier 
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studies 
12, 29

. Some well-known hotspot prediction 

methods like sequence-based hotspot prediction, 

structure-based hotspot prediction, and energy-

based hotspot prediction methods have been used 

to identify mutations of selected data sets. These 

methods are evaluated based on random prediction, 

selectivity, and precision. The probability of 

distributions and a sequence of random variables 

whose outcomes do not follow a deterministic 

pattern is called a random process. 

  

 
FIG. 2: HOTSPOT PREDICTIONS FOR THE TRANSAMINASE AND THE KETOREDUCTASE USING QZ-

WORKBENCH. FIGURES (A) AND (B) SHOW PERCENTAGE (%) RECOVERY OF THE TOTAL TRUE 

POSITIONS (POSITIONS THAT WERE MUTATED TO IMPROVE ACTIVITY) FOR DIFFERENT NUMBERS OF 

MUTATIONAL TRIALS (TOP 10, TOP 20, TOP 30, TOP 40, AND TOP 50) BASED ON SEQUENCE SCORE, 

CONTACT SCORE AS WELL PER RESIDUE CONTRIBUTION IN BINDING ENERGY. FIGURES (C) AND (D) 

SHOW % RECOVERY OF THE TOTAL MUTATIONAL POSITIONS (POSITIONS THAT WERE MUTATED TO 

IMPROVE ACTIVITY) FOR DIFFERENT NUMBERS OF MUTATIONAL TRIALS WHILE SCORES 

ASSOCIATED WITH SEQUENCE, CONTACT AND PER RESIDUE CONTRIBUTION ARE COMBINED. THE 

SOLID BLUE LINE IN ALL THE FIGURES CORRESPONDS TO THE RANDOM PREDICTION 

Sequence-Based Hotspot Prediction: Sequence 

analysis is the analytical method used to study the 

physicochemical characteristics, function, or 

evolution of protein sequences. It helps in 

understanding the genetic diversity of sequence and 

evolution of organisms through sequence 

alignment. In protein engineering studies, these 

play a vital role in knowing the functional, active 

site residues, their conservation, and percentage 

similarity/identity across different homologous 

sequences. Sequences were obtained and BLAST 

against a non-redundant database as well as Protein 

databank; the multiple sequence alignment was 

obtained for both the data sets. Based on multiple 

sequence alignment, the hotspots were predicted. 

The strategy used for selecting hotspots is (i) based 

on conservation of residues over the phylogeny, 

selecting less conserved residues as hotspots, (ii) 

hotspots corresponding to highly mutable residues 

located in the active site pocket or access tunnels, 

stability hotspots corresponding to flexible 

residues, and (iii) hotspots based on correlated 

residues or network residues. A focused library was 

created based on naturally accepted substitutions 

from phylogenetic analysis. Results show that 

already known mutations from both the datasets 
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(Transaminase and KRED) have mutations in 

highly conserved regions. These are away from 

active site pockets or tunnels. The percentage 

recovery was calculated based on the ratio of a 

number of trials to the number of sample datasets. 

The number of trials was determined using the ratio 

of True positive to the total number of mutations. It 

was found that the plot Fig. 2 for the Transaminase 

dataset was varying over the number of trials, 

whereas for KRED it was increasing and looked 

better for KRED data sets. The sequence analysis 

method doesn’t rely on the 3D structure of the 

protein. If the structure of protein is not available, 

the loops, tunnel residues or active site residues 

will not be known, and the method may not be able 

to predict accurate hotspots. The recovery plot tells 

us that the sequence analysis method depends on 

the strategy and type of data set selected.  

Structure-Based Hotspot Prediction: Structure-

Based hotspot prediction relies on the 3D structures 

of proteins where the interaction between two 

proteins or protein-substrate are calculated, and the 

amino acids which interact are considered as a 

hotspot. The interactions can be in the form of 

biochemical contacts between atom, residue, 

hydrogen bonds, and salt bridges. All kinds of 

direct interactions like polar and nonpolar, 

favourable and unfavourable play a role in hotspot 

prediction. The overlap between two atoms is 

defined as the sum of their Vander Waal’s radii 

(VDW) and the difference of the distance between 

them as well as an allowance for potentially 

hydrogen-bonded pairs 
23

. This can be understood 

by the expression given below 

overlapij = rVDWi + rVDWj – dij – allowanceij 

In the structure-based method, the substrate is 

docked into the active site of protein and 

simulations are run for the enzyme-substrate 

complex. The best conformations or snapshots are 

taken from trajectory based on the active site 

distances (distances between active site residues to 

the substate) and checked for the amino acid 

residues that make close contact with the substrate. 

This is done using the tool chimera. These residues 

are considered as mutable residues or hotspots for 

designing proteins for better activity. From contact 

score analysis, 17 hotspot residues were recovered 

and the remaining 14 positions could not be 

recovered for the transaminase data set, whereas for 

KRED data set 12 hotspots were recovered among 

the 19 hotspots mentioned in Codexis patent. The 

total time taken for the contact score analysis was 

3-4 h with CPU and without GPU cards, which 

means this method is computationally less 

expensive with more than 50% hotspot recovery. 

Fig. 2 shows the percentage recovery plot for both 

data set; contact score method is reliable, which is 

above the random prediction line. It indicates that 

the true positive values increase over a number of 

trials. The analysis suggests that contact score 

analysis for the structure-based method is more 

reliable as it predicts true positive hotspots for the 

given data sets but fails to recover 100 percent of 

given data sets. 

Energy-Based Hotspot Prediction Per Residue 

Energy: Binding free energies of all the complexes 

in the present study were calculated using 

Molecular Mechanics Poisson-Boltzmann Surface 

Area (MM-PBSA) approach. In order to calculate 

the binding energy, the water molecules were 

removed from the system. The binding free 

energies were estimated using an implicit 

representation of water by Poisson Boltzmann (PB) 

approaches. In this method, various conformations 

or snapshots of the solute were extracted from a 

molecular dynamics simulation trajectory
 24

.  

Per-residue binding energy analysis was performed 

in order to obtain a quantitative description of the 

contribution of each amino acid with the substrates 

considered.  Per-residue binding energy analysis 

provides insights about the contribution of each 

residue based on which mutable residues are 

considered 30. Best snapshots were taken from 

trajectory based on the active distance. 

Decomposition of per residue was checked by 

calculating the binding energy. If the per residue 

value is negative, then it favours complex 

formation in water, and if the value is positive 

except electrically charged amino acids like 

Arginine, Histidine, and Lysine, it does not 

stabilize complex formation. The unfavourable 

residues which destabilize complex formation are 

considered as a hotspot. From the recovery plot, the 

method used here was reliable for transaminase 

data set but unreliable for KRED data set as 

depicted in Fig. 2 based on random line prediction.  
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Further, the method is computationally 

inexpensive. However, the drawback of this 

method is that the observed values of the residues 

might be due to the electrochemical properties of 

the latter. The sequence method, structure-based 

method and Per residue energy-based method failed 

to recover 100 percent of the hotspot residues as 

these methods have their own limitations. To 

overcome these limitations, we have come up with 

a method where one of the above methods was 

used along with the cross-correlation 31 method or 

a combination of all methods to obtain 100 percent 

recovery of hotspots. 

 
FIG. 3: GRAPH SHOWS THE RECOVERY PERCENTAGE OBTAINED FROM CROSS-CORRELATION 

CALCULATION.  THE BAR GRAPH SHOWS THE VALUE OF CROSS-CORRELATION RANGING FROM 1 TO 

0.6, HAVING MORE RECOVERY THAN OTHER VALUES. THE BAR GRAPH IN BLUE REPRESENTS TA 

DATASET, THE BARS IN ORANGE SHOWS THE DATA FOR KRED DATA SETS 

The combination of sequence analysis, contact 

score and cross-correlation methods are used to 

recover most of the hotspot for the given data sets 

and can be seen by the F1 score in Fig. 4. 

 
FIG. 4: F1 SCORE PREDICTION OF HOTSPOTS FOR DIFFERENT METHODS IS SHOWN IN THE ABOVE 

IMAGE. THE CONTACT SCORE, PER RESIDUE, AND CROSS-CORRELATION METHOD, ARE STRUCTURE-

BASED METHODS. THE SEQUENCE ANALYSIS (SA) METHOD IS BASED ON CONSERVATION TO IDENTIFY 

FUNCTIONALLY IMPORTANT RESIDUES. FINALLY, A COMBINATION OF METHODS PREDICTING A 

GREATER NUMBER OF RESIDUES WITH 90-95% OF F1 SCORE WAS ACHIEVED 

For the current analysis, we selected top 20 

residues from the contact score as we saw their 

decrease in recovery of hotspots after top 20 for 

KRED data, whereas for transaminase, it is 30, so 

we took the top 20 based on comparison Fig. 5. 
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              FIG. 5: COMPARISON PLOT FOR CUT-OFF                  FIG. 6: PRECISION PLOT FOR EVALUATING  

                      PREDICTION FOR EVALUATING                                                   EACH METHOD 

Cross-correlation analysis of the top 10 contact 

score residues showed some of the residues that 

were not recovered from the contact score correlate 

(the Cross-correlation values range from 1.0 to 

0.6). This combination method (contact score and 

cross-correlation) failed to recover most of the 

hotspot residues of the data set. The top 20 residues 

from the contact score analysis were selected, and 

the cross-correlation between these residues were 

checked.

FIG. 7: SENSITIVITY PLOT FOR EVALUATING EACH METHOD 

The cross-correlation analysis of top 20 residues 

from contact score showed that most of the residues 

are recovered from the given data sets (ranges 

between 1.0 to 0.6). Moreover, the recovered 

residues had a very high correlation among them.  

If the cut-off value of these residues has increased 

to 30, it may give greater precision and sensitivity 

but the trial’s prediction may decrease eventually. 

From this analysis, we found that the combination 

of contact score with cross-correlation method 

recovers a large number of hotspots with high 

precision and sensitivity Fig. 6 & 7. 

Cross-Correlation (CORR): The extent of the 

correlation of residue-residue displacements was 

calculated using correlation algorithms for the 

simulation trajectory. A dynamics cross-correlation 

method has been used for a given residue or atom 

pair by wordom tool. The value can range from -

1.0 (completely anti-correlated motion) to + 1.0 

(completely correlated motion). The trajectory of 

the enzyme-substrate complex is chosen, and 

completely anti-correlated motion to completely 

correlated motion of residues is calculated. The 

recovery plot for the cross-correlation analysis 

showed in Fig. 3. As cross-correlation gives an idea 



Raj et al., IJPSR, 2022; Vol. 13(3): 1108-1119.                                            E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              1118 

of how each residue is making cross-talking 

between them for a specific movement of protein, 

so when you mutate any one point, they have to 

consider the corresponding residues for mutation 

based on the type of cross-connected with each 

other’s. The true positive hotspot residues obtained 

from the previous methods like sequence analysis 

and structure-based predictor methods like contact 

analysis and per residue energy are considered and 

its corresponding high cross-talking residues (the 

cross-correlation weight age above 0.6) are looked. 

From this analysis, it was observed that most of the 

unrecovered hotspot residues in the above methods 

are interconnected. In combination with the above 

methods, the cross-correlation method can be used 

for predicting the unrecovered hotspots for both the 

data sets. The cross-correlation between the 

residues decreased from 0 to -1.0 range as shown in 

Fig. 3 and the time taken for the CORR calculation 

and analysis was computationally less expensive 

CONCLUSION: The objective of this study was 

to develop a robust, computationally less expensive 

protocol and predict hotspots with high accuracy. 

In lieu of this, we were successfully able to develop 

a method that can dramatically reduce the number 

of variants selected for experimental validation. 

The efficiency of the sequence method, structure-

based method, and Per residue energy-based 

method were analyzed, and it was observed that 

most of the methods failed if they were used alone. 

Combining methods helps achieve higher precision 

and sensitivity for a given set of data and 

overcomes limitations of the individual methods.  

The technique used in the current study has the 

combination of contact score and cross-correlation 

method, which will recover most of the hotspots for 

the given data sets. The current methodology could 

be used in the future to predict hotspots in multiple 

data sets with higher precision and sensitivity, 

which leads to novel engineering strategies to 

design biocatalysts for specific chemical reactions 

with desired stereochemistry. 
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