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ABSTRACT: Topoisomerase enzymes are highly expressed in cells 

which undergo rapid multiplication. Inhibition of this enzyme represents 

a potential therapeutic approach for diseases such as cancer. In order to 

understand the structure activity correlation of 2, 4, 6 pyridine based 

topoisomerase inhibitor, we have carried out a combined pharmacophore 

modelling, 3D-QSAR studies, molecular docking and virtual screening 

studies. A five point pharmacophore with hydrogen bond acceptor (A), 

hydrogen bond donor (D) and three aromatic rings (R 5, R 6, R 7) was 

used to derive a predictive atom based 3d-qsar model. The generated 

model had showed good correlation coefficient for training set and test 

set (R2=0.91and Q2=0.827). It was also validated using enrichment factor 

(EF) and goodness of hit score (GH score) and was used for virtual 

screening of compounds from „zinc drug like database‟. Docking study of 

the hits retrieved from virtual screening revealed the binding affinity of 

these inhibitors at the active site of topoisomerase enzyme. In silico 

ADME predictions was also performed. These findings provide a set of 

guidelines for designing compounds with better topoisomerase inhibitory 

potential. 

INTRODUCTION: DNA topoisomerases are 

ubiquitous enzymes playing a key role in solving 

topological problems associated with DNA 

molecule 
1
.  

The extraordinary chain length of DNA and its 

double helical structure creates serious problems 

like twisting, knotting, tangling and super coiling 

during the process of replication, transcription and 

recombination.  
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DNA topoisomerases solves this problem by 

transiently breaking one or two strands through 

which the DNA strand can be passed in order to 

solve the topological problem and to relieve the 

torsion strain in DNA 
2
. There are two well-

characterized classes of human topoisomerase. 

Topoisomerase I (Topo I) are monomeric which 

transiently break and relegate one strand of duplex 

DNA , while topoisomerase II  (Topo II ) are 

homodimeric and will break both strands of a 

duplex  DNA. Type I and type II enzymes are 

fundamentally different in both mechanism and 

cellular function. A common feature of 

topoisomerases is their catalytic mechanism, which 

in all cases consists in a nucleophilic attack of a 

DNA phosphodiester bond by a catalytic tyrosyl 

residue from the topoisomerase 
3
.  
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These enzymes are highly expressed in rapidly 

proliferating tumor cells and, the medical 

importance of these enzymes is highlighted by the 

fact that they are the specific targets for many 

promising anticancer agents. Topoisomerase 

inhibitors are found to be the most efficient 

inducers of apoptosis 
4
. Drugs that inhibit the 

topoisomerases include some of the most widely 

used anticancer drugs like irinotecan and topotecan 

which are known Topo I inhibitors and Topo II is 

the target for anticancer drugs like etoposide, 

teniposide, doxorubicin, idarubicin, epirubicin, and 

mitoxantrone.  

Despite the wide use of Topo II targeted drugs as 

antitumour agents, several limitations hamper their 

benefits. Efforts for improving their clinical 

efficacy further by overcoming the drug resistance, 

myelosuppresion and poor bioavailability problems 

associated with them, were continued to be 

challenging 
5
.  

Therefore, efforts have been made to develop novel 

topoisomerase inhibitors with a new scaffold 

distinct from existing drugs with improved 

bioactivity. The scaffold hopping strategy is a 

powerful approach for the discovery and 

modulation of medicinal ingredient by modifying 

the core structure of promising ligands 
6
. 

Furthermore, this strategy not only gives the 

opportunity to modulate both selectivity and 

affinity of a given ligand but also allows the 

development and the exploitation of innovative 

chemistry in order to provide eventually new 

drugs. With this in mind, we selected 2, 4, 6 

trisubstituted pyridine derivatives which are  

reported to possess topoisomerase I and II 

inhibitory activity along with strong cytotoxicity 

against several cancer cell lines like breast cancer 

adenocarcinoma, cervix tumor, Human prostate 

tumor, colorectal adenocarcinoma and myeloid 

leukemia.  

Since these are the most common types of cancer, a 

good understanding of their chemical properties at 

the molecular level such as their lipophilic, steric, 

and electronic characteristics may provide 

important information on the anticancer properties 

of these analogues for further development. The 

discovery of new types of Topoisomerase 

inhibitors that can be synthesized easily, increased 

sensitivity in drug resistant tumors and decreased 

dose-limiting toxicities would be a significant 

addition to the choices available in the treatment of 

cancer. Although a structure-based drug design 

approach is an attractive strategy, a ligand-based 

approach such as 3D-pharmacophore generation is 

useful for the identification of the pharmacophoric 

features which could help in designing new 

molecules 
7
. Pharmacophore is an important and 

unifying concept in rational drug design that 

embodies the notion that molecules are active at a 

particular enzyme or receptor because they possess 

both a number of chemical features that favour the 

target interaction and geometry complementary to 

it 
8 

. 

In our efforts towards finding potent topoisomerase 

inhibitor, we undertook a comprehensive molecular 

modelling study to identify the pertinent features 

that could serve as a starting point for design of 

ligands with increased affinity and target 

selectivity.  

In this study, we have developed a quantitative 

pharmacophore model based on topoisomerase 

inhibitors collected from the literature. The best 

quantitative model was used as a 3D search query 

for screening the Zinc “clean drug-like” database 

to identify new topoisomerase inhibitors. Once 

identified, the candidate compounds were 

subsequently subjected to filtration using 

molecular docking to get drug like molecules. 

MATERIAL AND METHODS: 

Hardware and Software Specifications: 

Molecular modeling studies were carried out on a 

personal computer running on windows 
7
. 

Pharmacophore modeling and virtual screening 

experiments were performed using Schrodinger 

suite 2009 and modules like Phase, Ligprep, Quick 

Prop, Glide, and Virtual Screening Workflow were 

used in the study. 

Data Base preparation: Pharmacophore 

modelling correlates the spatial arrangement of 

various chemical features with their pharma-

cological effectiveness. It requires structural and 

activity data for a range of active and inactive 

molecules for generation of the hypothesis. For the 

pharmacophore modelling studies, a total of 72 

molecules belonging to 2, 4, 6 tri substituted 

pyridine analogue having topoisomerase inhibitory 

activity were selected from the literature 
9–11

.  
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The reported anticancer activity (IC50) against 

DU145, a human prostate tumor cell line was used 

and the IC50 value was converted into the 

corresponding PIC50 value.  

IC50 is the dose in micromoles (µM) required to 

produce 50% inhibition. The structures of the 72 

compounds used in this study, are given in Table 

1.  

TABLE 1: DATASET ANALYZED WITH EXPERIMENTAL AND PREDICTED ACTIVITIES 

 

Sl. No. Entry R2 R4 R6 
IC50 

(μM) 

Observed 

Activity 

Predicted 

Activity 

Pharm 

set 

QSAR 

set 

 

1 
Ligand-01 

   

 

29.87 
4.52 4.43 Inactive Training 

 

2 
Ligand-02 

   

 

26.68 
4.57 4.69 Inactive Training 

 

3 
Ligand-03 

  
 

 

30.44 
4.52 4.54 Inactive Training 

 

4 
Ligand-04 

   

 

20.09 
4.7 4.74  Training 

 

5 
Ligand-05 

   

 

14.75 
4.83 4.73  Training 

 

6 
Ligand-06 

   

 

17.23 
4.76 4.65  Training 

 

7 
Ligand-07 

   

 

33.44 
4.48 4.51 Inactive Test 

 

8 
Ligand-08 

   

 

18.51 
4.73 4.81  Training 

9 Ligand-09 

   

20.34 4.69 4.7  Training 

 

10 
Ligand-10 

   

 

25.32 
4.6 4.44  Test 

 

11 
Ligand-11 

   

 

16.41 
4.78 4.7  Training 

 

12 
Ligand-12 

   

 

22.96 
4.64 4.7  Test 

 

13 
Ligand-13 

   

 

29.47 
4.53 4.57 Inactive Training 

 

14 
Ligand-14 

  
 

 

20.52 
4.69 4.7  Training 

 

15 
Ligand-15 

   

 

18.49 
4.73 4.65  Test 
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16 
Ligand-16 

  

 

 

 

27.31 
4.56 4.58 Inactive Training 

 

17 
Ligand-17 

  

 

 

 

20.52 
4.69 4.79  Test 

 

18 
Ligand-18 

  

 

 

 

21.93 
4.66 4.7  Training 

 

19 
Ligand-19 

  

 

 

 

30.81 
4.51 4.45 Inactive Training 

 

20 
Ligand-20 

  

 

 

 

27.67 
4.56 4.65 Inactive Test 

21 Ligand-22 

  

 

 

21.57 4.66 4.73  Training 

 

22 
Ligand-23 

  

 

 

 

22.98 
4.64 4.73  Training 

23 

 
Ligand-25 

   

21.07 

 
4.68 4.72  Training 

24 Ligand-26 

   

13.01 

 
4.89 4.79  Training 

 

25 
Ligand-27 

   

 

37.59 
4.42 4.51 Inactive Training 

 

26 
Ligand-28 

 

  

 

 

 

21.84 
4.66 4.74  Training 

 

27 
Ligand-29 

 

  

 

 

 

19.27 
4.72 4.76  Training 

 

28 
Ligand-30 

 

   

 

16.82 
4.77 5  Test 

 

29 
Ligand-31 

 

  

 

 

 

18.10 
4.74 4.82  Training 

 

30 
Ligand-32 

 

  

 

 

 

9.18 
5.04 4.77  Training 

 

31 
Ligand-33 

 

  

 

 

 

12.98 
4.89 4.88  Test 
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32 
Ligand-34 

 
 

 

 

 

18.86 
4.72 4.64  Training 

 

33 
Ligand-35 

 
  

 

18.50 
4.73 4.63  Test 

 

34 
Ligand-36 

 
  

 

24.76 
4.6 4.58  Training 

 

35 
Ligand-37 

 
 

 

 

 

17.92 
4.75 4.91  Training 

 

36 
Ligand-38 

 
 

 

 

 

21.23 
4.67 4.7  Test 

 

37 
Ligand-39 

 
  

 

19.30 
4.71 4.8  Training 

 

38 
Ligand-40 

 
 

 

 

 

10.42 
4.98 4.92  Test 

 

39 
Ligand-41 

 
 

 

 

 

19.53 
4.71 4.49  Training 

 

40 
Ligand-42 

 
 

 

 

 

10.94 
4.96 4.96  Training 

 

41 
Ligand-43 

 
 

 

 

 

21.57 
4.66 4.63  Test 

 

42 
Ligand-44 

  

 

 

 

1.48 
5.83 5.48 Active Test 

 

43 
Ligand-45 

  

 

 
 

 

1.70 
5.77 5.67 Active Test 

 

44 
Ligand-46 

  

 

 

 

1.97 
5.7 5.74 Active Training 

 

45 
Ligand-47 

  

 

 

 

1.63 
5.79 5.73 Active Training 

 

46 
Ligand-51 

 

  

 

 

 

2.75 
5.56 5.26 Active Test 
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47 
Ligand-52 

 

  

 

 
 

 

2.65 
5.57 5.43 Active Training 

48 Ligand-53 

 
 

 

 

3.33 5.47 5.65  Training 

 

49 
Ligand-54 

 
 

 

 

 

2.02 
5.69 5.63 Active Training 

 

50 
Ligand-58 

 
 

 

 

 

11.23 
4.95 4.97  Training 

 

51 
Ligand-59 

 
 

 

 
 

 

11.59 
4.93 5.23  Training 

 

52 
Ligand-60 

 
 

 

 

 

11.57 
4.93 5.09  Training 

 

53 
Ligand-61 

 
 

 

 

 

11.36 
4.94 5.23  Test 

 

54 
Ligand-62 

 
 

 

 

8.09 
5.09 5.13  Training 

 

55 
Ligand-63 

 
 

 

 

26.76 
4.57 4.67 Inactive Training 

 

56 
Ligand-64 

 
 

 

 

2.51 
5.6 5.32 Active Training 

 

57 
Ligand-65 

 
 

 

 

 

2.80 
5.55 5.45 Active Training 

 

58 
Ligand-66 

 
 

 

 
 

 

4.19 
5.37 5.38  Training 

 

59 
Ligand-67 

 
 

 

 

 

3.89 
5.41 5.25  Test 

 

60 
Ligand-68 

 
 

 

 

 

5.30 
5.27 5.15  Test 
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61 
Ligand-72 

 
 

 

 

 

5.36 
5.27 5.21  Training 

 

62 
Ligand-73 

 
 

 

 
 

 

5.74 
5.24 5.2  Training 

 

63 
Ligand-74 

 
 

 

 

 

6.22 
5.2 5  Training 

 

64 
Ligand-75 

 
 

 

 

 

5.75 
5.24 5.27  Training 

 

65 
Ligand-76 

 
 

 

 

35.20 
4.45 4.44 Inactive Training 

 

66 
Ligand-77 

 
 

 

 

22.94 
4.63 4.7  Training 

 

67 
Ligand-79 

 
 

 

 

 

7.27 
5.13 5.17  Training 

 

68 
Ligand-80 

 
 

 

 
 

 

7.66 
5.11 5.15  Test 

 

69 
Ligand-81 

 
 

 

 

 

6.94 
5.15 5.14  Test 

 

70 
Ligand-82 

 
 

 

 

 

7.28 
5.13 5.05  Training 

 

71 
Ligand-83 

 
 

 

 

 

22.54 
4.64 4.93  Test 

 

72 
Ligand-84 

 
 

 

 

22.76 
4.64 4.69  Training 

 

Generation of the Common Pharmacophore 

Hypotheses (CPHs): Pharmacophore modelling 

provides a qualitative picture of the geometry of 

the active site by identifying the chemical features 

for binding of ligands and their spatial 

arrangements in 3D space 
12

. PHASE module of 

Schrodinger software 
13 

was used to generate 3D 

Pharmacophore models and QSAR studies for the 

present series of compounds.  

The structures of 72 molecules were sketched 

using maestro builder toolbar and all ligands were 

cleaned using the default Maestro settings. For 

each molecule, a set of conformers were generated 

through a mixed Monte-Carlo multiple minimum 

(MCMM)/Low mode (LMOD) with maximum 

number of 1000 conformers per structure using a 

process minimization of 100 steps and each 

minimized conformer was filtered through a 



Dev and Dhaneshwar, IJPSR, 2013; Vol. 4(8): 2939-2954.                          E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              2946 

relative energy difference 10 kcal/mol relative to 

the global energy minimum conformer with a 

maximum atom deviation of 2.00 Å. After the 

generation of conformers, only one conformer was 

displayed and carried for the further analysis. As 

active compounds are normally considered while 

developing common pharmacophore hypothesis, a 

“pharmaset” was defined by setting an active and 

inactive thresholds of PIC50 >5.5 for actives and 

PIC50 < 4.6 for inactives.  

PHASE provides a built-in set of six 

pharmacophore features such as hydrogen bond 

acceptor (A), hydrogen bond donor (D), 

hydrophobic group (H), negatively ionizable (N), 

positively ionizable (P) and aromatic ring (R). 

Common pharmacophores were identified using a 

tree-based partitioning technique that groups 

together similar pharmacophores according to their 

inter site distances, i.e., the distances between pairs 

of sites in the pharmacophore 
14, 15

. A five-point 

common pharmacophore hypothesis was identified 

from all the conformations of the active ligands 

having identical set of features with very similar 

spatial arrangement keeping minimum inter site 

distance 2.0Å in a final box size of 1.0Å with 

requirement that all actives should match.  

Generated common pharmacophore hypotheses 

were examined by scoring alignment of actives 

against a reference ligand by using default 

settings.Scoring function such as score active, 

score inactive and rescore were applied for all five-

featured common pharmacophore hypotheses. The 

scoring procedure provided a ranking of different 

hypotheses from which further investigation was 

carried out for appropriate hypothesis with rational 

choice.  

Building the 3D-QSAR model: An atom-based 

3D-QSAR model is more useful in explaining the 

structure activity relationship than pharmacophore 

based 3D-QSAR as the latter does not consider 

ligand features beyond the pharmacophore model 
16

. In atom-based 3D-QSAR, a molecule is treated 

as a set of overlapping van der Waals spheres. 

Each feature is categorized according to a simple 

set of rules:  

(a) Hydrogens attached to polar atoms are 

classified as hydrogen-bond donors (D);  

(b) Carbons, halogens, and C–H hydrogens are 

classified as hydrophobic/non-polar (H);  

(c) Atoms with an explicit negative ionic 

charge are classified as negative ionic (N);  

(d) Atoms with an explicit positive ionic 

charge are classified as positive ionic (P); 

and;  

(e) N, O, and hydrogen-bond acceptors are 

classified as electron withdrawing (W) and 

all other types of atoms are classified as 

miscellaneous (X). 

All the common pharmacophore hypotheses 

successfully generated and scored to generate 

atom-based 3D-QSAR models by correlating the 

observed and estimated activity for the set of 51 

training molecules using PLS analysis. The PLS 

regression was carried out using PHASE with a 

maximum of PLS factor 5 and a grid spacing of 

1.0Å. All models were validated by predicting 

activity of the set of 21 test molecules. The 3D-

QSAR was evaluated by cross validated R2, Q2, 

SD, RMSE and Pearson-R. The predicted PIC50 at 

5
th

 PLS factor are tabulated in Table 2.  

Evaluation of Pharmacophore model: The 

generated pharmacophore model should be 

statistically significant, predict activity of the 

molecules accurately, and it should also 

differentiate active and inactive compounds from a 

database. Therefore, the derived pharmacophore 

was further validated using  the hit list (Ht), 

number of active percent of yields (%Y), percent 

ratio of actives in the hit list (%A), enrichment 

factor (EF), false negatives, false positives, and 

goodness of hit score (GH scoring method) 
17

. 

A decoy set including 1001 molecules with 

unknown activity and 15 active compounds is 

prepared for this step. Enrichment Factor (EF) and 

Goodness of Hit Score (GH) were calculated to 

evaluate the hypothesis ADRRR.1. EF and GH 

were calculated using below equations: 

GH Score = [(Ha/4HtA)(3A+ Ht)＋(1- ((Ht -

Ha)/(D-A))] 

EF = (Ha/Ht)/(A/D) 

Where Ht is the number of hits retrieved, Ha is the 

number of active molecules in the hit list; A 
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represents the number of active molecules present 

in the database and D stands for the total number of 

molecules in the decoy set. The GH score ranges 

from 0, which indicates the null model, to 1, which 

indicates the ideal model. 

Database search for new hits: The best-ranked 

five-point pharmacophore model, ADRRR.1, was 

used as a search query to retrieve compounds with 

novel and desired chemical features from Zinc 

“clean drug-like” database 
18

. 

Protein preparation: The protein structure of 

human Topo II-α co-crystallised with DNA and 

etoposide (PDB code 3QX3, resolution 2.16 Å) 

complex was obtained from the RCSB PDB 
and

 was 

prepared using the Protein Preparation Wizard of 

the Schrödinger suite. H-atoms were added to the 

protein, including the protons necessary to define 

the correct ionization and tautomeric states of 

amino acid residues such as Asp, Ser, Glu, Arg, 

and His. The missing side chains of residues were 

corrected using prime interface incorporated in 

Maestro.  

For each structure, minimization was carried out 

with the Impact refinement module, using the 

OPLS-2005 force field to alleviate steric clashes 

that may exist in the structures. The minimization 

was terminated when the energy converged or the 

Root Mean Square Deviation (RMSD) reached a 

maximum cut off of 0.30 Å 
19

. Topo-II complex, 

3QX3 contains Mg
2+

 ions, and a co-crystallised 

DNA segment, which was retained during the 

docking study 
20

.  

After protein preparation, receptor grid was set up, 

which was generated by employing the Receptor 

Grid Generation panel. All amino acids within 20 

Å of the 3QX3 were included in the grid file 

generation. Since this protein was associated with 

ligand, the ligand was selected to define the 

position and size of the active site. 

Docking study: Docking studies were performed 

by means of Glide v5.6 
21

. It performs grid-based 

ligand docking with energetics and searches for 

favourable interactions between one or more 

typically small ligand molecules and a typically 

larger receptor molecule, usually a protein 
22

. Glide 

provides three different levels of docking 

precision: HTVS, high-throughput virtual 

screening; SP, standard precision; and XP, extra 

precision. Docking calculations were first 

performed in HTVS mode and subsequently in SP 

and XP mode. All the molecules were built within 

Maestro using the Built module and an exhaustive 

conformational search was carried out for all 

molecules using OPLS-2005 force field, imposing 

a cut-off of allowed value of the total 

conformational energy compared to the lowest-

energy state. A minimization cycle for conjugate 

gradient and steepest descent minimizations was 

used with default value 0.05Å for the initial step 

size and 1.00Å for the maximum step size. In 

convergence criteria for the minimization, both the 

energy change criteria and gradient criteria were 

used with default values 10
−7

 and 0.001 kcal/mol, 

respectively. 

Virtual screening and drug-likeness prediction: 

For the exploration of novel scaffolds with 

Topoisomerase inhibitory activity, an in silico 

screening of 10,384,703 compounds from Zinc 

„clean drug-like‟ database with derived 

pharmacophore model as a query was performed. 

The search criteria for compounds included in this 

database were: x log p ≤ 5.0, molecular weight in 

the range of 150–500, H-bond donor‟s ≤ 5, H-bond 

acceptor‟s ≤10.  

Finally, compounds with the good estimated 

activity values were retrieved from databases and 

obtained molecules were chosen for subsequent 

molecular docking studies using virtual screening 

workflow by applying various filters in order to get 

more drugs like molecules. 

RESULT AND DISCUSSION: The aim of this 

study was to elucidate the 3D structural features of 

2,4,6 tri substituted pyridine derivatives crucial for 

binding, by generating 3D pharmacophore and to 

quantify the structural features of topoisomerase 

inhibitors essential for biological activity by 

generating atom-based 3D QSAR model.  

For the pharmacophore modelling and QSAR 

studies, we have used Phase module of 

Schrodinger suite. This hypothesis generated by 

Phase will also convey the relative binding of the 

ligands inside the active site of the receptor.  

Hence, we have used conformation suggested by 

the hypothesis for generating 3D-QSAR model to 

identify overall aspects of molecular structure that 

govern the activity. 
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Generation of the common pharmacophore 

hypotheses (CPHs): For the generation of 

pharmacophore model, compounds in the active 

“pharmaset” are normally considered. We included 

nine compounds having PIC50 >5.5 as active and 

PIC50 < 4.6 as inactives and used four minimum 

sites and six maximum sites to have optimum 

combination of sites or features common to the 

most active compounds. Sixteen common 

pharmacophore models were generated with 

different combination of variants in which top 

three ranking models were considered based on 

survial-inactive score for further QSAR generation. 

The top model was found to be associated with the 

five-point hypotheses was having hydrogen bond 

acceptor (A), hydrogen bond donor (D) and three 

aromatic rings (R 5,R 6,R 7) and was denoted as 

ADRRR1 (Fig. 1a). The special arrangement of 

features along with their distance aligned on most 

active compound 44 are depicted in Fig. 1b.  

 
FIGURE 1A: GENERATED PHARMACOPHORE MODEL ADRRR.1, FIGURE 1.B: PHARMACOPHORE 

HYPOTHESIS AND DISTANCE BETWEEN PHARMACOPHORIC SITES. ALL DISTANCES ARE IN Å UNIT.

The 72 molecules  were   divided into a training set 

(54 compounds) and a test set (18 compounds) for 

the purpose of atom-based 3D-QSAR. The training 

set molecules were selected in such a way that they 

contained information in terms of both structural 

features and biological activity ranges. The most 

active, several moderately active, and some 

inactive compounds were included in the training 

set in order to obtain critical information on 

pharmacophoric requirements 
22

. In order to assess 

the predictive accuracy of the model, a set of 18 

compounds was arbitrarily set aside as the test set. 

Training set compounds were aligned on the 

common pharmacophore hypotheses and analyzed 

by PLS with five factors. The predictivity of the 

generated 3D-QSAR model was analyzed by test 

set prediction.  

Considering the flexibility of all the molecules, the 

predictive qualities of the QSAR model was 

satisfactory, based on R
2
, Q

2
, SD, and RMSE, as 

well as on the high value on the Pearson-R. The 

predicted and observed activities of the training 

and test set compounds are shown in Figure 2.  

The training set correlation is characterized by PLS 

factors (R
2
 = 0.9101, SD=0.1168, F =91.1, P 

=2.175e-015).  

The test set correlation is characterized by PLS 

factors (Q
2
 =0.8276, RMSE=0.1633, Pearson-R 

=0.9159).  
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FIGURE 2: GRAPH OF OBSERVED VERSUS PREDICTED BIOLOGICAL ACTIVITY OF TRAINING SET AND 

TEST, RESPECTIVELY 

The large value of F (91.1) indicates a statistically 

significant regression model, which is also 

supported by the small value of the variance ratio 

(P), an indication of a high degree of confidence. 

Further, small values of standard deviation 

(0.1168) of the regression and RMSE (RMSE = 

0.1633) makes an obvious implication that the data 

used for model generation are best for the QSAR 

analysis. Validity of the model can be expressed by 

cross-validated correlation coefficient (Q
2
 = 

0.8276). The Q
2
 value is more reliable and robust 

statistical parameter than R
2
 because it is obtained 

by external validation method by dividing the 

dataset into training and test set. 

The QSAR model displays 3D characteristics as 

cubes and the blue cubes indicate positive 

coefficients which are favourable while red cubes 

indicate negative coefficients which are 

unfavourable regions for activity. This might give a 

clue to what functional group are desirable or 

undesirable at certain positions in a molecule. The 

blue cubes in 3D plots of the 3D pharmacophore 

regions refer to ligand regions in which the specific 

feature is important for better activity, whereas the 

red cubes demonstrates that particular structural 

feature or functional group, which is not essential 

for the activity or likely the reason for decreased 

binding potency. 

The basic pyridine nucleus was found to be 

essential for the activity. The volume occlusion 

maps generated from 3D-QSAR studies highlight 

the structural features required for topoisomerases 

inhibition. when the QSAR model is applied to the 

most active compound 44 and least active 

compound 27 is shown in figure 3(a-b). 

 
3a                                                                    3b 

FIGURE 3: A. ATOM BASED 3D QSAR MODEL VISUALIZED IN THE CONTEXT OF MOST ACTIVE COMPOUND 44; B. 

LEAST ACTIVE COMPOUND 27 (BLUE CUBES INDICATE FAVOURABLE REGIONS WHILE RED CUBES INDICATE 

UNFAVOURABLE REGION FOR THE ACTIVITY 
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Blue cubes were observed near the OH group of 

phenyl ring in ligand 44, suggesting that the 

presence such group at this position, capable of 

acting as hydrogen-bond donor, seemed to have a 

favourable effect on biological activity. Owing to 

the presence of this H-bond donor, compounds 11 

and 39 are active. In the case of least active 

compound, 27 which was having a five member 

ring and also lacking the OH group.  

It was reconfirmed by docking study, in the 

binding mode analysis of 44 with PDB 3QX3, H-

bond contacts between Thiamine fragment 

(DT.D9) of DNA and the OH group of ligand 44 

was observed. Most active compound 44 showed 

good binding affinity with the protein and the 

docking score was found to be -7.29 and for the 

least active compound it was - 0.116. 

Visual analysis demonstrates that the presence of 

the blue cubes at the phenyl ring, attached to 4
th

 

position of pyridine ring is pointing out the positive 

potential of hydrophobic group and is requisite for 

the activity at this particular place.  

It can be suggested that addition of appropriate 

hydrophobic group at these positions, will append 

the topoisomerase inhibition, whereas the addition 

of hydrophobic groups on ring attached to 6
th

 

position of pyridine ring will contribute to 

decreased receptor binding.  

The effect of H-bond donor, Hydrophobic, 

Electron-withdrawing substituents are given in 

Figure 4.  

 
FIGURE 4A-F: EFFECT OF H-BOND DONOR, HYDROPHOBIC, ELECTRON-WITHDRAWING SUBSTITUENTS 

FOR COMPOUND 27; 4(A-C) AND FOR COMPOUND 44; 4(D-F). (BLUE CUBES: FAVOURABLE INFLUENCE 

ON ACTIVITY; RED CUBES: UNFAVOURABLE INFLUENCE ON ACTIVITY). 

The predicted and actual activity was good for the 

developed model for both test and training set. The 

predictions of different activities have been 

classified according to the following residual scale 

(i.e. residual is computed as the difference between 

the experimental activity and the estimated 

activity): residuals less than 0.8 are considered as 

good predictions; residuals between 0.8 and 1.6 are 

considered weak predictions and residuals higher 

than 1.6 are considered poor predictions.  

In this study, residual scale (figure 5) was in the 

rage of ±0.3 which is an indication of a good 

model. 
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FIGURE 5:  RESIDUAL SCALE 

Assessment of Pharmacophore quality: The 

quality of pharmacophore was analyzed  using a set 

of parameters such as hit list (Ht), number of active 

percent of yields (%Y), percent ratio of actives in 

the hit list (%A), enrichment factor (E), false 

negatives, false positives, and goodness of hit score 

(GH) (Table 4). The false positives and true 

negatives are 3 and 8 respectively. EF and GF are 

48.38 and 0.78 respectively, When GH score is 

higher than 0.7, the model is very good indicated 

the quality of the model and high efficiency of the 

screening test. 

TABLE 2: STATISTICAL PARAMETER FROM 

SCREENING DECOY SET 

S. No. Parameter  

1 
Total number of molecules in database 

(D) 
1016 

2 Total number of actives in database (A) 15 

3 
Total number of hit molecules from the 

database (Ht) 
21 

4 
Total number of actives molecules in the 

hit list (Ha) 
15 

5 % Yield of actives [(Ha/Ht) ×100] (%Y) 71.4 

6 % Ratio of actives [(Ha/A) ×100] (%A) 100 

7 Enrichment Factor (EF) 48.38 

8 False negatives [A-Ha] 0 

9 False Positives [Ht -Ha] 6 

10 Goodness of Hit score (GH) 0.7809 

 

Virtual screening: A pharmacophore-based virtual 

screening has been carried to find out potential 

topoisomerase inhibitors. Hypothesis ADRRR.1 

was used to carry out a query of ZINC “drug-like” 

database of 10,384,703 molecules, which includes 

a wide variety of chemical scaffolds. The 

sequential virtual screening performed in this study 

is schematically represented in a flowchart in 

Figure 6, from which we can witness the number 

of hits reduced after each screening step.   

 
FIGURE 6: SCHEMATIZATION OF THE VS WORKFLOW 

The initial filter using database query returned over 

12009 hits. Next, various conformers of these hits 

were searched thoroughly for matches to 

pharmacophore model. While retrieving hits, 

matching of all five pharmacophoric features was 

made mandatory. A hit list of 1099 compounds 

matching the pharmacophore model was obtained. 

The virtual screening workflow (VSW) in Maestro 

was used to dock and to score the lead-like 

compounds. In the first step, Glide was run in high-

throughput virtual screen mode. A total of 127 hits 

obtained after drug-likeness screening by the 

application of Lipinski‟s „rule of five‟ and kept to 

go onto the next, Glide Single Precision (SP), 

stage.  

The search retrieved 13 molecules were retained 

and docked using Glide Extra Precision (XP) 

mode. Among these, the molecules after visual 

inspection and estimated XP GlideScore ≥ −9.6, 

were considered as potential topoisomerase 

inhibitors and are shown in Figure 7. 
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FIG. 7: POTENTIAL TOPOISOMERASE INHIBITORS 

Docking study of hits: The ligand interaction 

diagram of most active hit compound 

(ZINC09009213) is shown in Figure 8. It is 

observed that both the lead molecules were able to 

occupy the same sites occupied by the co-

crystallized ligand (etoposide) molecule, indicating 

that this site was the most probable interaction site 

for these compounds. As presented in Figure 9, 

compound ZINC09009213 and ZINC09357466 are 

inserted between the base pairs of DNA and may 

effectively blocking religation of the cleaved 

phosphodiester bond and hence as etoposide, 

therefore, the docking results suggest that the DNA 

site in Topo II-α is the more probable binding site 

for this type of molecule. So a mechanism of action 

similar to that of etoposide can be proposed for 

these lead compounds. 

TABLE 3: DOCKING SCORE OF SELECTED HITS: 

Sl. 

No. 
Entry ID XP G Score 

Docking 

score 

1 ZINC09009213 -10.299378 -9.756578 

2 ZINC09357466 -9.637271 -9.171671 

5 Etoposide -8.298543 -8.298543 

 

 
FIGURE 8: CRYSTAL STRUCTURE OF ZINC09009213 BOUND TO TOPOISOMERASE II (PDB: 3QX3) 

 
FIGURE 9: PICTORIAL REPRESENTATION OF THE GLIDE XP DOCKING OF COMPOUND ZINC09009213 

(GREEN) ZINC09357466 (YELLOW) ALONG WITH ETOPOSIDE (ORANGE) INTO ACTIVE SITE OF TOPO-II  
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To validate the procedure, and adequate scoring 

function selection, the co-crystallised ligand 

etoposide was removed and redocked it into the 

receptor (PDB-3QX3). It was found that this 

structure, when superimposed on the crystal 

structure, has a root mean square deviation 

(RMSD) of only 0.065673Å. Docking score of all 

lead molecules and etoposide are shown in Table 3. 

It can be seen that two of the lead molecules were 

having docking score higher than that of etoposide.  

Predicted ADME Properties: The ZINC database 

was evaluated for drug-likeness of the lead 

molecules by assessing their physicochemical 

properties and by applying Lipinski‟s rule of five. 

Their molecular weights were <500 Daltons with 

<5H-bond donors, <10H-bond acceptors and a log 

p of <5; these properties were well within the 

acceptable range of the Lipinski rule for the final 

lead molecules. 

Drug-like behaviour of the potential leads was 

assessed by analysing pharmacokinetic parameters 

required for ADME using QikProp 3.2 
24

.  QikProp 

is frequently used in in-silico screening studies for 

ADME analysis of potential leads 
25

. QikProp 

properties for the final hits were calculated.  

The molecular weights of all the lead molecules 

were in the range of 424–461. QP log Po/w shows 

the partition coefficient, which is important for the 

estimation of absorption and distribution of drugs 

within the body. For the lead compounds, the 

partition coefficient (QPlogP o/w) and water 

solubility (QPlogS), critical for estimation of 

absorption and distribution of drugs within the 

body ranged between 3.264 to 4.527 and −5.258  to 

−6.286.  

Cell permeability (QPPCaco), a key factor 

governing drug metabolism and its access to 

biological membranes, ranged from 29.7 to 1207.5. 

QPPMDCK value which are considered to be a 

good mimic for the blood brain barrier ranges from 

77.853 to 310.456. Overall, the percentage human 

oral absorption for the compounds ranged from 

86.47 to 100 %. The standard drug etoposide the 

predicted percentage human oral absorption was 

only 41.52% all the virtual lead molecules 

retrieved from virtual screening has showed betted 

oral absorption.   

All lead molecules shown pharmacokinetic 

parameters within the acceptable range defined for 

human use (see Table 4 footnote), thereby 

indicating their potential as drug-like molecules. 

TABLE 4: ADME PROPERTIES OF SELECTED HITS 

Zinc ID QPlogPo/w 
a 

QPPCaco
b
 QPlogS 

c
 QPlogHERG 

d
 QPPMDCK 

e 
% Absorption

f
 

09009213 3.268 180.725 -5.304 -6.668 77.853 86.47 

09357466 3.264 182.223 -5.259 -6.618 78.551 86.51 

Etoposide -0.806 335.935 -2.375 -4.241 152.155 41.52 
a
Molecular weight. 

a
Predicted octanol/water partition co-efficient log p (acceptable range: −2.0 to 6.5). 

b
Predicted Caco-2 cell 

permeability in nm/s (acceptable range , <25 is poor and >500 is great). 
c
Predicted aqueous solubility; S in mol/L (acceptable 

range: −6.5 to 0.5). 

CONCLUSION: In conclusion, A ligand-based 

pharmacophore model was generated for the series 

of 2, 4, 6 pyridine derivatives with topoisomerase 

inhibitory activity to reveal the structural features 

responsible for biological activity. A five-point 

pharmacophoric feature with three aromatic rings 

(R) and hydrogen bond acceptor (A), hydrogen 

bond donor (D) was developed and evaluated by 

3D-QSAR model. It resulted in good statistical 

significance and predictive ability with R
2
 = 0.9101 

and Q2 =0.8276. The developed pharmacophore 

was also validated using EF and GH score. 

Furthermore, visualization of the 3D-QSAR model 

in the context of the molecules under study 

provided details of the relationship between 

structure and activity and thus provides explicit 

indications for the design of better analogues. We 

have also shown how straightforward virtual 

screening can be used to rapidly retrieve 

compounds with a desired activity from a large 

compound pool with limited experimental effort.  

QikProp pharmacokinetic prediction provided 

physicochemical properties along with BBB 

permeability and percentage oral absorption. These 

parameters are helpful to find out bioavailability 

and toxicity prediction in human body. Compared 

with currently known active compounds, these 

newly identified inhibitors have significant 

potential for further development. 
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