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ABSTRACT: Heavy metal toxicity has been a subject of concern for the past 

few decades. Due to the emerging awareness about the detrimental health 

hazards and adverse effects across all the levels of any ecosystem, the removal 

of heavy metals (HM) from contaminated water systems and soil has gained the 

profound attention of the scientific community for the last couple of decades. 

Living and dead cells of biological organisms have found to have capable of 

retaining the harmful HMs substantially from aqueous and solid matrix. This 

review encompasses the efficacy of cyan bacterial cells in removing HMs from 

contaminated water and wastewaters. The different strains collected from 

different sources which are capable of removing specific species have been 

discussed along with the biotic and biotic factors affecting the process have been 

assessed. Also, the mechanism of toxicity and removal of HMs through 

biosorption and bioaccumulation by these cells have been taken into 

consideration. The thorough knowledge of the cyanobacterial removal of HMs 

can be a solution towards sustainable, cost-effective green technology. 

INTRODUCTION: The Increase in toxic heavy 

metal contamination has been a significant 

worldwide problem for the last few decades. Heavy 

metals are elements having atomic weights between 

63.5 and 200.6 and a specific gravity greater than 

5.0. In metallurgy, a heavy metal may be defined 

on the basis of density chemists would likely be 

more concerned with chemical behavior, whereas 

in physics, the distinguishing criterion might be the 

atomic number. There are many industries all over 

the world that produces waste containing heavy 

metals like, lead (Pb), zinc (Zn), copper (Cu), 

arsenic (As), cadmium (Cd), chromium (Cr), nickel 

(Ni) and mercury (Hg) 
1
. 
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Among the most prevalent heavy metals, 

Chromium (VI) is an oxidizing agent and 

carcinogenic in nature which can cause cancer in 

the digestive tract and lungs, epigastric pain, 

nausea, severe diarrhea, vomiting, and hemorrhage 
2
. Cd was listed as a category -I carcinogen by the 

International Agency for Research on Cancer 

(IARC) and a group B-I carcinogen by the USEPA 

used in metal refineries, smelting, mining, and the 

photographic industry 
3
. Copper, which is required 

for the development of tissue and bone, is also 

required for enzyme synthesis. However, it causes 

headache, vomiting, nausea, liver and kidney 

failure, respiratory problems, and abdominal pain 
4
.  

Heavy metals can be removed by three different 

methods: chemically, physically, and biologically. 

In both the physical and chemical methods, the 

heavy metal ions removal includes chemical 

precipitation, ion-exchange, adsorption, membrane 

filtration, electrochemical treatment technologies, 

etc. In biological methods, many groups of 
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organisms are capable of removing these metals 

from the surrounding liquid matrix. Bacteria are 

capable of acting a bio-sorbent due to their high 

surface to volume ratio and a high number of 

potentially active sorption sites 
4
. Fungal strains 

have also been reported for remediation of heavy 

metals from polluted soils and water 
5, 6

. Green 

algae and cyanobacteria (blue-green algae) are also 

known for their capacity to remove heavy metals. 

Cyanobacteria are a group of photosynthetic 

bacteria, some nitrogen-fixing, that live in a wide 

variety of moist soils and water either freely or in a 

symbiotic relationship with plants or lichen-

forming fungi 
7
. Cyanobacteria are cosmopolitan 

microorganisms that play an important role in 

many ecosystems. It can be found in almost every 

terrestrial and aquatic habitat ocean, freshwater, 

damp soil, temporarily moistened rocks in deserts, 

bare rock and soil, and even Antarctic rocks 
8
. 

Cyanobacteria can remove these heavy metals by 

different biological processes like bio-sorption, bio-

accumulation, and cellular uptake of those metals. 

The biosorption process is most common because 

their EPS (extracellular polysaccharides) are more 

accurate and have more potential than chemical and 

biological processes. The present study investigates 

and demonstrates the removal efficiency of 

different cyanobacterial strains for heavy metals 

from contaminated water sources through the 

biosorption and bioaccumulation process and the 

various biotic and abiotic factors affecting the 

process. 

Heavy Metal Toxicity on Cyanobacteria: The 

cytotoxicity of heavy metals has been studied and 

discussed by the scientific community for over the 

last few decades. The pathway of cytotoxicity of 

different heavy metals have also been established. 

For example, mercury, having the ability to cross 

the biological membrane and high affinity towards 

thiol and amino groups of enzymes, becomes 

capable of damaging membranes and several 

cellular enzymes 
9
. The heavy-metal (HM) toxicity 

has been reported in all the trophic levels of the 

food chain of terrestrial and as well as aquatic 

ecosystems. The incidents of the thinning of 

eggshells and the reduced fertility due to low sperm 

count in humans are the direct proof of the HM 

biomagnification across the food chain. As other 

primary producers of an ecosystem, cyanobacteria 

are also affected by HM's presence in water bodies. 

The studies by Al-Amin et al. 2021 show that the 

cyanobacterial cellular mechanism is hampered by 

the efflux of HMs inside the cell. The HMs get 

their entry inside the cell through carriers and 

transporters 
10

. The transport of HMs again can be 

active, which involves the breakdown of ATP, 

which yields energy, or passive, which doesn’t 

involve energy input. The HMs namely, Arsenic, 

Cadmium and Chromium directly affect the 

enzymatic reaction of hydrolysis taking place in the 

reaction center (RC) of photosynthesis inside the 

cytoplasm. The breakdown of water yields reactive 

oxygen species (ROS) which may further cause 

DNA damage and inactivation of significant 

cellular enzymes and also may lead to cellular 

apoptosis by triggering caspases 
11

. Therefore, the 

cyanobacterial cells have developed their own 

mechanism of combating the challenges of HM 

accumulation. There arethree major mechanisms 

through which cyanobacterial cells captures HMs. 

Extracellular polysaccharides (EPS) present in the 

outer layer of the Gram-negative cell wall of those 

cells can bind HMs because of the presence of 

anionic groups. The cytoplasm of the 

cyanobacterial cells has metallothionine enzymes 

which is rich in thiol groups having cysteine rich 

moiety. Those enzymes can capture HMs through 

the negatively charged thiol groups and therefore 

resist those HMs from reacting with the active 

cellular molecules like important enzymes. The 

third way of challenging the problem is to reflux 

the accumulated HMs back to the extracellular 

matrix which can be achieved through membrane 

transport proteins 
10

. 

Collection Area and Culturemedia of the 

Cyanobacterial Strains: In the domain of 

Bacteria, Cyanophyta occupies a wide species pool. 

Cyanophyta, also known as cyanobacteria, is a 

group of photosynthetic bacteria, some of which 

are nitrogen-fixing. Since 1986, many scientists 

have provided us with good scientific literature on 

heavy metal removal in cyanobacteria. In the Class 

of Cyanophycean, many species are capable of 

removing heavy metals with different processes. 

The main focus of the discussion is the organisms 

responsible or capable of removing heavy metals. 

Different species of cyanobacteria developed their 

biomass in different growth mediums shown in 

Fig1. Cyanobacteria species are grown in BG11 

medium, which is a very well-known culture 
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media. Cyanobacteria are not only grown in BG11 

media but also optimally grown in different other 

growth media as well. For removal of metal ions, 

total 14 cyanobacterial growth media have been 

reported invarious researchers, Allen-Arnon, 

Aqueous artificial medium, ASN-III, RC saline, 

BG11, BG11 (without EDTA), ATCC, Chu-Ten, 

HGZ, LB medium, Parkers’s Medium, Schlosser 

liquid medium, Seawater medium, and Zarrouk 

medium are few of those Table 1. BG11 shows the 

highest use, i.e., 35.6%, among those commonly 

used as growth media for cyanobacterial strains. 

The bar diagram in Fig. 1 gives a clear knowledge 

of different media for culturing cyanobacteria for 

heavy metal removal. 

 
FIG. 1: DIFFERENT GROWTH MEDIA FOR 

CYANOBACTERIAL STRAINS 

Anabaena cylindrica (ATCC 27899) was grown in 

a modified medium of Allen and Arnon, where 

one-eighth strength of all components was without 

phosphate and nickel 
12

 and also in ATCC medium 

61613. Anabaena doliolum Ind1 was collected 

from a water body adjacent to a coal mining site in 

Cheiruphi, Jaintia Hills district, Meghalaya, India, 

grown under BG11 medium 
14

. The blue-green 

algae Anabaena sphaerica also culturedin the 

BG11 medium which was collected from the Nile 

River in the Ismailia canal 
15

. Under 10 days’ 

continuous light source Anabaena subcylindrica 

was grown exponentially which was collected from 

the drainregion in Egypt 
16

. Another type of the 

genus is Aphanothece, where 3 species were 

reported for heavy metal removal. For the 

experimental purpose of heavy metal removal, 

Aphanothece flocculosa was purchased from the 

Department of Botany, University of Toronto, 

Canada. The strain was cultivated under BG11 

media on 10 days of fluorescent light exposure 
17

. 

Aphanothece halophytica is also grown under the 

BG11 medium supplemented with 18mM NaNO3 
18

. In the Zarrouk medium, Arthrospira platensis 

was cultivated as a heavy metal removal agent 
19, 20

. 

Two strains of Calothrix i.e., Calothrix sp. (8113) 

& Calothrix sp. (8125) was found to be capable of 

removing heavy metals 
21

. Those species were 

obtained from the Microbiological Resources 

Center (MIRCEN), Thailand Institute of Scientific 

and Technological Research (TISTR), Bangkok. 

Another culture was collected from TISTIR 

Calothrix marchica (TISTR8109) and the strain 

was cultured in medium-18 
21

. Gloeocapsa sp. F-6 

gl was collected from the Institute of Microbiology 

RAS (Moscow) where it was cultured in D media 
22

.  

Another species of Gloeocapsa sp. was cultured in 

medium 
23

. Gloeothece magna was collected from 

an irrigation canal at Sohag city, Egypt and grown 

on BG-11 medium 
24

. The genus Lyngbyaisauni 

cellular autotroph, there were 4 species capable of 

heavy metal removal process under this genus. One 

of those Lyngbya sp. was collected from a pond 

close to the Banaras Hindu University 
25

. Lyngbya 

putealis HH-15 was cultured on BG-11 medium 

and collected from Haryana, India 
26

.  

Other 2 species i.e., Lyngbya wollei & Lyngbya 

majuscula were collected from Russell Lake 

located in Russellville, AR 
27

 and East Kolkata 

Wetland, Kolkata (EKW), West Bengal, 

respectively 
28

. Mycrocystis aeruginosa bloom 

material was collected from Dianchi Lake, 

Kunming, in southwestern China 
29

. Nostoclinckia 

& Nostoc ruvularis were both isolated from the 

cultivated soil at Assiut in Egypt. The species were 

cultured in Chu’sten nutrient medium 
30

.  

Nostocmuscorum, collected from a highly pollute 

driver Umshyrpi, in East-Khasi Hills district of 

Meghalaya, India, was cultured in BG-11 media 31 

and from Indian Agricultural Research Institute, 

New Delhi Nostocmuscorume was obtained and 

cultured under Chu’s ten medium under laboratory 

conditions 
32, 33

. Nostoc spongiae for me was 

collected from Chao Praya River in Bangkok and 

the Pak Kret Nontaburee and Bang-Puu Industrial 

Estate areas in Thailand 
21

. Under the family 

Oscillatoriaceae, many species of Oscillatoria were 

found to be capable of removing heavy metal in 
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different processes of removal. Oscillatoria 

angustissima culture was obtained from the 

National Facility for Blue Green Algal Collections 

(IARI, New Delhi, India) 
34

. From the ponds close 

to the campus of the Banaras Hindu University, 

Varanasi Oscillatoria sp was collected for heavy 

metal removal studies 
25

. Under Phormidium genus 

manyspecies were reported as a heavy metal 

removing agent. One species was collected from a 

thermal springlocated at Néris-les-Bains, 

Auvergne, France 
35

. Also, Phormidium sp. was 

collected from a pond located within the agriculture 

farmhouse of Banaras Hindu University, Varanasi 
25, 36, 37

. The cyanobacterial mat of Phormidium sp 

was obtained from a disposal site near tannery 

sludge in Jajmau tannery area in Kanpur 
38

. 

Phormidium laminosum 
39

 also was found in the 

samearea. Phormidium tenue was collected from 

Nagapattinam coastal area located on the southeast 

coast of India 
40

. Phormidium valderianum BDU 

30501 was collected from the germplasm collection 

of the National Facility for Marine Cyanobacteria, 

Tiruchirappalli, India 
41

. 

Heavy Metal Removal by Cyanobacterial 

Strains: Various cyanobacterial strains have been 

reported to play a potential role in heavy metal 

removal. The mechanism by which these strains 

effectively remove heavy metals primarily varies 

among bioaccumulation, biosorption, and 

bioremediation. Phormidium sp is a genus of 

filamentous cyanobacteria is widespread in nature 

and grows into mat-like structures. It has been 

found to bioaccumulate the toxic heavy metals 

chromium, copper, nickel, lead 
35

 and remove 

cadmium by biosorption 
25, 36

. Nostoc muscorum, 

another filamentous cyanobacterium inhabiting 

both the terrestrial as well as aquatic environments 

has been reported to remove cadmium, lead 
16, 32, 33,

 
42

, cobalt, copper 
16, 42

 and zinc 
42

 by biosorption. 

Oscillatoria sp which is another genus of 

filamentous cyanobacterium have been found to 

show a diversity in the process by which itremoves 

the heavy metal. This genus has been reported to 

remove copper by biosorption 
25, 36

, uranium by 

bioremediation 
43

, zinc by bioaccumulation 
44,

 and 

bioremediation 
43

. whereas cadmium, lead, 

chromium is removed by biosorption 
36, 38

 as well 

as bioremediation 
43, 44

. Spirulina plantesis also has 

shown toxicity removal abilities against a wide 

range of heavy metals, including cadmium, copper 

45, 46, cobalt, zinc 46, chromium, nickel, zinc, 

aluminum, iron strontium 
47

. Anabaena sp is 

another genus of filamentous cyanobacteria that 

exist as plankton and are known for nitrogen-fixing 

abilities. Several species of this genus have shown 

heavy metal removal capacity. Anabaena cylindrica 

has been reported to remove nickel and lead by 

bioaccumulation mechanism 
12,

 whereas 

Anabaenasub cylindrica has been reported to 

effectively remove cobalt, copper, and lead by 

biosorption 
16

. Cyanothece sp, agenus of unicellular 

oxygenic photosynthesizing cyanobacteria has also 

been reported to remove chromium, copper, and 

nickel by biosorption 
48, 49

. Gloeocapsa sp, either 

unicellular or made up of small groups of cells 

grouped within mucilaginous envelopes, has been 

also found to remove cadmium, copper, 

leadandzinc by biosorption 
22

. 

 
FIG. 2: METALS REMOVED BY CYANOBACTERIA 

Mechanism of Heavy Metal Removal through 

Cyanobacterial Strains: The mechanism of HM 

removal includes bioaccumulation, bioremediation 

and biosorption. Among all the processes, 

biosorption is the most commonly found one in 

case of cyan bacterial HM removal owing to the 

capacity of retaining cationic metals of the cellular 

surface due to binding with phosphate and other 

anionspresent in the EPS (Extracellular 

polysaccharides). Presence of anionic groups at the 

extracellular surface and also on abiotic factors like 

pH, temperature and contact time. It has been found 

that the dead biomass of the cyanobacterial cells is 

also efficient in biosorption compared to live cells, 

which leads to the advantage of the overall process 

eliminating the chances of probable toxicity of the 

live cyanobacterial saxitoxin and other commonly 

found exotoxins. Amongst all other mechanisms, 

the process of biosorption has many advantages, 
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including high removal rate, easier desorption, 

minimum sludge generation, selective removal of 

HM species, and low operational cost.  

The bioaccumulation of HM is a cellular process 

where the cations are accepted inside the cell 

cytoplasm through simple diffusion or passive and 

active transport through carrier proteins Fig. 4.  

After the cations has successfully get their passage 

inside, those recaptured by the cytosolic metallo 

thionine proteins but if they are freely moving then 

they exhibit cytotoxicity leading to cellular damage 

in several ways Fig. 5.  

Bioremediation means the total transformation of 

the HM in their valency level, changing those from 

toxic to non-toxic form. 

 
FIG. 3: DIFFERENT BIO-REMOVAL PROCESS 

 
FIG. 4: EFFECT OF HEAVY METAL ON CYANOBACTERIAL CELL 

 
FIG. 5: MECHANISM OF HEAVY METAL STRESS TO LERANCE OF CYANOBACTERIAL CELL
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Adsorption Iotherms for Cyanobacterial Heavy 

Metal Removal: The cyanobacterial heavy metal 

removal had followed different isotherms which 

had found to be mostly Freundlich and Langmuir 

isotherms. For a few years many literatures confirm 

that many isotherms are directly involved and show 

specific results on heavy metal removal through 

cyanobacterial strains. Among 79 cyanobacterial 

species Table 1 different isotherms in biosorption 

such as Langmuir isotherm, Freundlichisotherm, 

Redlich- Peterson isotherm, Khan isotherm, Sips 

isotherm, Temkin isotherm, Dubinin Radushkeiso 

therm and Langmuir–isotherms were noticeable for 

metal removal. Under biosorption process different 

isotherms were demonstrated in Fig. 3. Anabaena 

doliolum Ind1 showed Langmuir 14 & Freundlich 

isotherm 
42

 and Oscillatoria limnetica shows three 

types of isotherm Langmuir, Freundlich & Redlich-

Peterson 
50

, like those many cyanobacterial species 

showing their involvement in the metal removal 

process. In the last fewdecades’ research shows a 

list of metals which were removed by 

cyanobacteria. In this study we demonstrate 

different cyanobacterial species successfully 

removed 18 heavy metals. 18 metals with different 

oxidation states are also involved in this bioprocess 

removal action. Like‘ Sliver (AgIII)’ is removed by 

both the process of biosorption which follows 

Freundlich isotherm, and accumulation by the 

species Microcystis aeruginosa 
51

. 
 

S. 

no 

Scientific 

name of the 

cyanobacteria 

Growing 

Medium 

Metal 

removed 

by the 

strain 

 

Process of 

removal 

Abiotic Conditions  

Analytical 

Methods 

 

Ref. Temp(◦C) pH Light Intensity/ Photoperiod 

1 Anabaena 

doliolum Ind1 

BG11 Cd(II) Biosorption 

(L) 

25 CultureMedi

um7 

fluorescent light with a 

photon fluence rate of 

50μmol/(m2.sec) 

FTIR 14 

2 Anabaena 

sphaerica 

BG11 Cd(II) Biosorption 

(F,L,D- 

R) 

25±2 Biosorption5

.5 

continuous illumination 

(2500lux) 

FTIR 15 

BG11 Pb(II) Biosorption 

(F,L,D- 

R) 

25±2 Biosorption3 Continuous illumination 

(2500 

lux) 

FTIR 15 

3 Anabaena 

spiroides 

- Cd(II) Biosorption 

(F,L,R- 

P) 

25 Culture 

Medium4- 

5 

fluorescent light(50mmol 

photon /m2/s,12 

hlight/darkcycle) 

- 50 

- Cu(II) Biosorption 

(F,L, R-P) 

25 Culture 

Medium4- 

5 

fluorescent light(50mmol 

photon /m2/s,12 

hlight/dark cycle) 

- 50 

- Pb(ll) Biosorption 

(F,L,R- 

P) 

25 Culture 

Medium4- 

5 

fluorescent light(50mmol 

photon /m2/s,12 

hlight/dark cycle) 

- 50 

4 Anabaena 

subcylindrica 

- Co(II) Biosorption 30 Culture 

Medium 

7.8 

Continuous light for 10 days Statistical 16 

- Cu(II) Biosorption 30 Culture 

Medium 

7.8 

continuouslightfor10days Statistical 16 

- Cu(II) Biosorption 30 Culture 

Medium 

7.8 

continuouslightfor10days Statistical 16 

- Pb(II) Biosorption 30 Culture 

Medium 

7.8 

continuouslightfor10days Statistical 16 

5 Anabaena 

variabilis 

BG11 Cr(VI) Biosorption 

(F) 

23 Culture 

Medium8 

12/xmol photon m -2 s -1 

provided by white 

fluorescent 

tubes 

- 55 

6 Anabaena  

variabilis 

NIES23 

- Cd(II) Biosorption - - - - 53 

- Cu(II) Biosorption - - - - 53 

- Pb(ll) Biosorption - - - - 53 
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- Zn (II) Biosorption - - - - 53 

7 Anacystis 

nidulans 

Aqueousa

rtificial 

Culture 

Medium 

Cd(II) Biosorption 

(F) 

 - illuminated and dark 

conditions 

AAS, 

Spectropho

tometry 

45 

Aqueousa

rtificial 

Culture 

Medium 

Cu(II) Biosorption 

F) 

 - illuminated and dark 

conditions 

AAS, 

Spectropho

tometry 

45 

8 Aphanothece BG11 Hg(II) Biosorption 

(F,L) 

22 Culture 

Medium 6 

fluorescent lighting AAS 17 

 flocculosa BG11 Zn (II) Biosorption(

L) 

30◦C 

withoutCO

2 

supplementa

tion,Isolate

d25◦C 

Culture 

Medium6.5, 

Culture Medium7.5 

cool-white fluorescent lamps 

atanirradiance of 60E/m2/s1 

Spectropho

tometry 

18 , 

21 

9 Aphanotheces

acrum 

- Nd Biosorption - Acidic 

Culture 

Medium 

- - 54 

10 

 

Aulosira 

fertilissima 

- Cd(II) Biosorption 

(F,L) 

L(appropriat

e) 

Biomassw

as 

driedat80◦

C in ahot 

air 

oven 

Culture 

Medium 

pH5.0±0.2 

- - 58 

- Cu(II) Biosorption 

(F,L) 

L(appropriat

e) 

Biomassw

as 

driedat80◦

C in ahot 

air 

oven 

Culture 

Medium 

pH5.0±0.2 

- - 58 

- Ni(II) Biosorption 

(F,L) 

L(appropriat

e) 

Biomass 

wasdried 

at 80◦C in a 

hotairoven 

Culture 

Medium 

pH5.0±0.2 

- - 58 

- Pb(ll) Biosorption 

(F,L) 

L(appropriat

e) 

Biomass 

wasdried 

at 80◦C in a 

hotairoven 

Culture 

Medium 

pH5.0±0.2 

- - 58 

- Zn (II) Biosorption 

(F,L) 

L(appropriat

e) 

Biomass 

wasdried 

at 80◦C in a 

hotairoven 

Culture 

MediumpH5

.0±0.2 

- - 58 

- Cu(II) Biosorption 

(F,L,S, 

R-

P,K,T,GL) 

Experimen

ton 

25±2◦C 

Absorption 

Medium 

pH.5.0 ±0.2 

- - 25 

11 Cyanospiraca

psulataPCC95

02 

Zarrouk

Medium 

Cu(II) Biosorption 28±1C - "Fluorescent 

lampwithaphotonfluxof 

100μmol 

(photon)m-2s-1 

 66, 

67 

12 Cyanospiraca

psulataATCC4

3193 

Zarrouk 

Medium 

Cr(III) Biosorption Cultivated

at 

28±1◦C 

CultureMedi

um11 

photon flux of 

580μmol(photon)m−2s−1 

photosyntheticactiveradiatio

n 

(PAR) 

AAS, 

Spectropho

tometry 

68 

Zarrouk

Medium 

Cr(VI) Biosorption Cultivated 

at28±1◦C 

CultureMedi

um11 

photon flux of 580μmol 

(photon) 

m−2s−1photosyntheticactive 

AAS, 

Spectropho

tometry 

68 
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radiation 

(PAR) 

13 Cyanothece 

ET5,TI4, 

PE14, 

VI22,CE4) 

Seawater 

Medium 

Cr(III) Biosorption Cultivated

at 

35±1◦C 

Culture Medium8.5 photon flux of 

580μmol(photon)m−2s−1 

photosyntheticactiveradiatio

n 

(PAR) 

AAS, 

Spectropho

tometry 

68 

  Seawater

Medium 

Cr(VI) Biosorption Cultivated 

at35±1◦C 

Culture Medium8.5 photon flux of 580μmol 

(photon) 

m−2s−1photosyntheticactive 

radiation 

(PAR) 

AAS, 

Spectropho

tometry 

68 

14 Cyanothecesp. Seawater 

Medium 

Cr(III) Biosorption Culture30±

1◦C 

CultureMedi

um5 

photon flux of 

100μmolphotonm-2s- 

1 

AAS 69 

Seawater 

Medium 

Cu(II) Biosorption Culture30±

1◦C 

CultureMedi

um5 

- AAS 69 

Seawater 

Medium 

Ni(II) Biosorption Culture30±

1◦C 

CultureMedi

um5 

- AAS 69 

15 Gloeocapsacalc

area 

BG11 Cr(III) Biosorption (F,L) Culture28±

3◦C 

OptimalA

bsorption2 

3000lx (with 24 

hillumination) 

usingcoolfluorescent 

tubes 

Spectropho

tometry 

71 

16 Gloeocapsasp - Cd(II) Biosorption(

L) 

Culture28±

3◦C 

Culture 

Medium8- 

8.2 

30μmolphotonm-2s-1 FTIR,AAS 22 

- Cu(II) Biosorption(

L) 

Culture28±

3◦C 

Culture 

Medium8- 

8.2 

- FTIR,AAS 22 

- Pb(ll) Biosorption(

L) 

Culture28±

3◦C 

Culture 

Medium8- 

8.2 

- FTIR,AAS 22 

- Zn (II) Biosorption(

L) 

Culture28±

3◦C 

Culture 

Medium8- 

8.2 

- FTIR,AAS 22 

- Pb(II) Biosorption(F.L) Culture25◦

C 

Culture 

Medium3,4,

5,6,7, 

absorption-4 

400μEm-2 s-1 - 23 

17 Gloeothecemagn

a 

BG11 Mn(II) Biosorption(

F) 

25±1◦C Culture Medium7.4 24μEm-2s-1 Spectropho

tometry,IR 

spectra 

72 

BG11 Cd(II) Biosorption(

F) 

25±1◦C CultureMedi

um 

7.4 

- Spectropho

tometry, 

IRspectra 

72 

18  

Gloeothece 

sp.PCC6909 

- Cu(II) Biosorption Culture30±

1◦C 

OptimalAbs

orption 

5 

fluorescentlight(50mmolpho

tonm2s1,12 

hlight/darkcycle) 

TEM,SEM

,Lowry 

colorimetri

c 

70 

- Cu(II) Biosorption 25◦C Optimalabso

rption 

atpH4.5–5.5 

- TEM 73 

19 Hapalosiphonsc

hmidlei 

- Cd(II) Adsorption Experimen

t 

25±2◦C 

CultureMedi

um 

7.5 

- - 21 

20 Lyngbyamaju

scula 

- Cu(II) Biosorption (F,L)  Biosorption6 - FTIR,EDX

,SEM 

28 

21 Lyngbya 

putealisHH-15 

BG11 Cr(VI) Biosorption (F,L) Culture28±

3◦C 

Culture 

Medium8.5, 

Biosorption3 

3000lx - 26 
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BG11 Cr(VI) Biosorption (F,L) Culture28±

3◦C 

CultureMedi

um 

8.5, 

- - 26 

 Cr(VI) Biosorption 

[F,L,T, 

(D-R), (F-

H),(D-

R&B), (E& 

T),BET] 

28±3◦C - 3000luxusingcoolfluorescentt

ubes 

- 26 

22 Lyngbyasp. - Cd(II) Biosorption 

(F,L,S, 

R-

P,K,T,GL) 

Experimen

ton 

25±2◦C 

Biosorption5

.0± 

0.2 

- - 25 

- Cu(II) Biosorption 

(F,L,S,R-

P,K,T, 

GL) 

Experiment 

on25±2◦C 

Biosorption5

.0± 

0.2 

- - 25 

- Pb(ll) Biosorption 

(F,L,S, 

R-

P,K,T,GL) 

Experimen

ton 

25±2◦C 

Biosorption5

.0± 

0.2 

- - 25 

 Lyngbyawollei - Cu(II) Biosorption Culture 

23±2◦C,Cu

lture45◦C 

Culture 

MediumpH7

± 1 

- Statistical 27, 

74 

23 

 

 

M. aeruginosa 

f.aeruginosaNI

ES 

44 

- Cd(II) Biosorption - - - - 53 

- Zn (II) Biosorption - - - - 53 

- Cu(II) Biosorption - - - - 53 

- Pb(ll) Biosorption - - - - 53 

- Cd(II) Biosorption(

L) 

Inoculated

22- 

26◦C 

- 40 W 

whitefluorescentlamp 

- 29 

24 Microcystisaer

uginosa 

- Hg(II) Biosorption(

L) 

Inoculated

22- 

26◦C 

- - - 29 

- Pb(ll) Biosorption(

L) 

Inoculated

22- 

26◦C 

- - - 29 

- Ur(IV) Biosorption (F,L)  OptimalUpta

ke4- 

8 

- - 75 

- Ag(III) Biosorption(

F), 

Bioaccumula

tion 

Inoculated

25◦C 

- 200μmolm-2s-1 - 51 

- Cd(II) Biosorption(F), 

Bioaccumula

tion 

Inoculated

25◦C 

- - - 51 

- Cu(II) Biosorption(

F), 

Bioaccumula

tion 

Inoculated

25◦C 

- - - 51 

25 Microcystis 

aeruginosaf. 

flos-

aquaestrain 

C3-40 

- Cd(II) Biosorptio

n, 

Bioaccumula

tion 

- Metal that 

wasbound 

bycapsularp

olysaccharid

eat 

pH8 to9 

- Colorimetr

ic 

76 

- Cu(II) Biosorptio

n, 

Bioaccumula

- Metal that 

wasbound 

bycapsularp

- Colorimetr

ic 

76 
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tion olysaccharid

eat 

pH8 to9 

- Mn(II) Biosorptio

n, 

Bioaccumula

tion 

- Metal that 

wasbound 

bycapsularp

olysaccharid

eat 

pH8 to9 

- Colorimetr

ic 

76 

- Pb(ll) Biosorptio

n, 

Bioaccumula

tion 

- Metal that 

wasbound 

bycapsularp

olysaccharid

eat 

pH8 to9 

- Colorimetr

ic 

76 

26 Microcystissp. - Cu(II) Biosorption  Biosorption2 - - 77 

  - Cd(II) Biosorption(

F) 

Experimen

ton 

29±2◦C 

Biosorption6

.5-7 

- - 78 

- Cu(II) Biosorption(

F) 

Experimen

ton 

29±2◦C 

Biosorption6

.5-7 

- - 78 

- Zn (II) Biosorption(

F) 

Experimen

ton 

29±2◦C 

Biosorption6

.5-7 

- - 78 

Parker's 

Medium 

Cr(II) Biosorption(

F) 

Culture29±

2◦C 

Culture 

Medium9.2, 

Biosorption6 

72μmol photon m-2s-

1lightintensity 

IRspectra 79 

Parker's

Medium 

Fe(II) Biosorption(

L) 

Culture29±

2◦C 

Culture 

Medium9.2, 

Biosorption6 

- IRspectra 79 

Parker's 

Medium 

Ni(II) Biosorption(

F) 

Culture29±

2◦C 

Culture 

Medium9.2, 

Biosorption6 

- IRspectra 79 

Parker's

Medium 

Cu(II) Biosorption (F,L) Isolated 

at29±2◦C 

Culture Medium9.2 72μmolphotonm2s-1 

lightintensity 

- 59 

27 Nostoc 

calcicolaHH- 

12 

BG11 Cr(VI) Biosorption (F,L) Culture28±

3◦C 

Biosorption3 3000lx - 63 

28  

Nostoccalcicol

a 

Allen 

&Arnon'

s 

Cu(II) IntracellularUp

take 

Culture24±

1◦C 

- illuminated withcool 

whitefluorescentlights 

(intensity50/xEm- 

- 58, 

59 

nitrogenf

ree 

Medium 

    2s-1,   

29 Nostoccommu

ne 

- Cd(II) Biosorption (L,F) roomte

mperature 

30±2◦C 

Biosorption6 - FTIR 80 

- Zn (II) Biosorption (L,F) roomte

mperature 

30±2◦C 

Biosorption6 - FTIR 80 

30 Nostoclinckia Chu-Ten 

Medium 

Cd(II) Biosorption(

L) 

Culture30±

2◦C 

CultureMedi

um 

7.1-8 

5Wm−2lightintensity - 30 

Chu-Ten 

Medium 

Zn (II) Biosorption(

L) 

Culture30±

2◦C 

CultureMedi

um 

7.1-8 

5Wm−2lightintensity - 30 

31 Nostocmuscor

um 

BG11 Zn (II) Biosorption (F,L) Culture25±

2◦C 

Culture Medium7.5 under continuouslight at a 

photonfluence 

rateof50 

FTIR,EDX

,SEM 

31 
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μmol/m2/s. 

Chu-Ten 

Medium 

Cd(II) Biosorption Culture25±

1◦C 

Biosorption6 16-hlight/dark 

cycle. 

Statistical 33 

Chu-Ten 

Medium 

Pb(ll) Biosorption Culture25±

1◦C 

Biosorption5 16-hlight/dark 

cycle. 

Statistical 33 

Chu-

TenMedi

um 

Cd(II) Biosorption 

(L,F),Intrace

llular 

uptake 

Culture25±

1◦C 

IntracellularU

ptake7 

16-h light/darkcycle. Statistical 32 

Chu-Ten 

Medium 

Pb(ll) Biosorption (L,F), 

Intracellular 

uptake 

Culture25±

1◦C 

Intracellular

Uptake 

6 

16-h light/darkcycle. Statistical 32 

- Co(II) Biosorption Grownat30

◦C 

- undercontinuous 

lightfor10days. 

Statistical 16 

- Cu(II) Biosorption Grownat30

◦C 

- undercontinuous 

lightfor10days. 

Statistical 16 

- Cu(II) Biosorption Grownat30

◦C 

- undercontinuous 

lightfor10days. 

Statistical 16 

- Pb(II) Biosorption Grownat30

◦C 

- under 

continuouslightfor10days. 

Statistical 16 

- Cr(Vi) Biosorption(

F, 

L) 

Culture25◦

C 

- - FTIR 81 

- Cd(II) Biosorption (L,F) Culture25-

30◦C 

Biosorption3 was 40–47 μmolphotons 

m−2 s−1(cool white 

light)withat16:8light:darkcy

cle.5 

Wm−2light 

intensity 

- 42 

- Cu(II) Biosorption (L,F) Culture25-

30◦C 

- was40–

47μmolphotonsm−2s−1 

(cool 

- 42 

     white light) 

withat16:8light:darkcycle.5

W 

m−2 lightintensity 

  

- Pb(ll) Biosorption (L,F) Culture25-

30◦C 

- was40–47μmolphotons 

m−2 s−1(cool 

white light) with at16:8 light: 

darkcycle.5Wm−2 

lightintensity 

- 42 

  BG11 Zn (II) Biosorption (L,F) Culture25-

30◦C 

- was 40–47 μmolphotons 

m−2 s−1(cool white 

light)withat16:8light:darkcy

cle.5 

W m−2 lightintensity 

- 42 

32 Nostocpunctifo

rme. 

BG11 Cr(III) Biosorption(

F, 

L) 

Culture28±

3◦C 

Biosorption2 - SEM 71 

33  

Nostocrivulari

s 

Chu-Ten 

Medium 

Cd(II) Biosorption(

L) 

Isolatedat 

30±2◦C 

CultureMedi

um 

7.1-8 

5 Wm−2light 

intensity 

- 30 

  Chu-Ten 

Medium 

Zn (II) Biosorption(

L) 

Isolatedat 

30±2◦C 

CultureMedi

um 

7.1-8 

5 Wm−2light 

intensity 

- 30 

34  

Nostoc 

sp.(accession 

no.KX814344) 

BG11 Cr(III) Biosorption (F,L) Cultured 

at30±2◦C 

Culture Medium6 under 

continuouslightwithaphotonr

ateof 

50μmolm−2s−1. 

FTIR,EDX 82 

35 Nostoc BG11 Cr(III) Biosorption Culture Throughout Cool whitefluorescent AAS 69 
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sp.PCC7936 grown30±

1 

theexperime

nt 

pHconstanto

n5 

tubesgiving a meanphoton 

flux of 100lmolphotonm-2s- 

1 

BG12 Cu(II) Biosorption Culture 

grown30±

1 

Throughoutt

he 

experiment 

pHconstanto

n5 

Cool whitefluorescent 

tubesgiving a 

meanphotonfluxof100 

lmolphotonm-2s-1 

AAS 69 

BG13 Ni(II) Biosorption Culture 

grown30±

1 

Throughoutt

he 

experiment 

pHconstanto

n5 

Cool whitefluorescenttubes 

giving a 

meanphotonfluxof100 

AAS 69 

     lmolphotonm-2s- 

1 

  

BG11 Cu (II) Biosorption 

(F,L) 

- pH8.0 - - 66 

- Cr (III) Biosorption Cultivated

at 

28±1◦C 

7.5 photon flux of 

580μmol(photon)m−2s−1 

photosyntheticactive 

radiation(PAR) 

- 68 

- Cr (VI) Biosorption Cultivated 

at28±1◦C 

7.5 photon flux of 580μmol 

(photon) 

m−2s−1photosyntheticactive 

radiation 

(PAR) 

- 68 

36 Oscillatoriaan

gustissima 

BG11 Cu (II) Biosorption 

(F) 

grown25±

2°C 

Culture 

Medium7± 

0.2,Biosorpti

on 

4-5 

1100lux AAS 34 

37  

Oscillatoriaho

mogenea 

ASN,RC 

salineMe

dium, 

BG11 

Sr Biosorption 

(L) 

incubateda

t29 

Biosorption9

± 

0.3 

1200Lux 

illumination 

bywhitefluorescent 

light 

Pixelmicro

probe 

83 

38  

 

 

Oscillatorialae

tevirens 

BG11 

Without

EDTA 

Pb(ll) Biosorption(

L) 

maintained 25 

±2°C 

Culture Medium3-7 undera16:8light–darkcycle 

and anirradianceof 

∼30 μmolphotonsm−2−1 

provided by coolwhite 

fluorescentlamps. 

FTIR,EDX,FAAS,

SEM 

61 

39  

 

 

Oscillatorialim

netica 

- Cd(II) Biosorption 

(F,L,R- 

P) 

Incubated2

5◦C 

Culture Medium4-5 fluorescentlight(50mmol 

photon /m2/s,12 

hlight/darkcycle) 

- 50 

  - Cu(II) Biosorption 

(F,L,R- 

P) 

Incubated2

5◦C 

Culture Medium4-5 fluorescentlight(50mmol 

photon /m2/s,12 

hlight/darkcycle) 

- 50 

- Pb(ll) Biosorption 

(F,L,R- 

P) 

Incubated2

5◦C 

Culture Medium4-5 fluorescentlight(50mmol 

photon /m2/s,12 

hlight/darkcycle) 

- 50 

40 Oscillatoriasp. BG11 Cd(II) Biosorption 

FandL 

((F)) 

25grown Culture Medium7.1 cool whitefluoreccent 

lightintensityin12h 

light-darkcycle, 

AAS 84 

- Cd(II) Biosorption 

(F,L,S, 

R-

P,K,T,GL) 

Experimen

ton 

25±2◦C 

Culture 

Medium5, 

Biosorption5 

- - 25 

- Cu(II) Biosorption Experimen Culture - - 25 
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(F,L,S, 

R-

P,K,T,GL) 

ton 

25±2◦C 

Medium5, 

Biosorption5 

- Pb(ll) Biosorption 

(F,L,S, 

R-

P,K,T,GL) 

Experimen

ton 

25±2◦C 

Culture 

Medium5, 

Biosorption5 

- - 25 

- Cd(II) Biosorption - Biosorption5 - - 37 

- Cu(II) Biosorption - Biosorption5 - - 37 

- Pb(II) Biosorption - Biosorption5 - - 37 

- Cr(VI) Biosorption(

F, 

L) 

- Biosorption5

.5- 

6.2 

- FTIR,SEM 38 

- Mn(II) Biosorption - 6.57-6.75 - - 85 

41 Oscillatoria 

sp.H1 

BG11 Cd(II) Biosorption(

F, 

L) 

grown25 Adsorption6 12h–12hlight– 

darkcycle 

- 86 

  

 

 

Oscillatoria 

trichoides 

BG11 

Without

EDTA 

Pb(ll) Biosorption(

L) 

maintained

at25 

±2°C 

Biosorption5

- 

5.14 

undera16:8light–darkcycle 

and anirradianceof 

∼30 μmolphotonsm−2s−1 

provided by coolwhite 

fluorescentlamps. 

FTIR,FAA

S, 

Statistical 

63 

42 Phormidiumla

minosum 

- Cu(II) Biosorption(

L) 

-  - - 74 

- Fe(II) Biosorption(

L) 

-  - - 74 

- Ni(II) Biosorption(

L) 

-  - - 74 

- Zn (II) Biosorption(

L) 

-  - - 74 

- Cu(II) Biosorption -  - - 39 

43  

Phormidium 

sp. 

. 

- Cd(II) Biosorption(

F, 

L, S,R-P, K, 

T,GL) 

experiment

s25 

±2°C 

Biosorption5

± 

0.2 

- - 25 

- Cu(II) Biosorption 

(F,L,S, 

R-

P,K,T,GL) 

experiment

s25± 

2°C 

Biosorption5

± 

0.2 

- - 25 

- Pb(ll) Biosorption 

(F,L,S,R-

P,K,T, 

GL) 

experiment

s25 

± 2°C 

Biosorption5

± 

0.2 

- - 25 

- Cd(II) Biosorption experiment

s25± 

2°C 

Biosorption5 - Kinetics 

model 

36 

- Cu(II) Biosorption experiment

s25± 

2°C 

Biosorption5 - Kinetics 

model 

36 

- Pb(II) Biosorption experiment

s25± 

2°C 

 - Kinetics 

model 

36 

- Cd(II) Biosorption experiment

s25± 

2°C 

Biosorption5 - - 37 

- Cu(II) Biosorption experiment

s25± 

2°C 

 - - 37 

- Pb(II) Biosorption experiments25± 

2°C 

- - 37 
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- Cr(VI) Biosorption 

(F,L) 

experiments25 

±2°C 

Biosorption5.5- 

6.2 

- - 38 

44 Phormidiumva

lderianum 

BDU30501 

ASN-III 

Medium 

Cd(II) Biosorption grown25±

2°C 

Culture Medium7 under continuouswhite f̄ 

fluorescentlightat 

anintensityof1500 

lux 

- 87 

ASN-III 

Medium 

Co(II) Biosorption grown25± 

2°C 

Culture Medium7 under continuous 

whitef̄fluorescentlightatanint

ensity 

of1500 lux 

- 87 

ASN-III 

Medium 

Cu(II) Biosorption grown25±

2°C 

Culture Medium7 under̄continuous 

whiteffluorescent 

lightat 

anintensityof1500 

lux 

- 87 

ASN-III 

Medium 

Ni(II) Biosorption grown25±

2°C 

CultureMedi

um 

7 

under continuous 

whitef̄fluorescentlightatanint

ensity 

of1500 lux 

- 87 

45 Scytonema 

schmidlei 

- Cd(II) - Experimen

t 

25±2◦C 

CultureMedi

um 

7.5 

- - 21 

46  

Scytonemasp. 

. 

- Cd(II) Biosorption 

(F,L,S, 

R-

P,K,T,GL) 

Experiment2

5±2◦C 

Biosorption5

± 

0.2 

- - 25 

- Cu(II) Biosorption 

(F,L,S,R-

P,K,T, 

GL) 

Experiment2

5±2◦C 

Biosorption5

± 

0.2 

- - 25 

- Pb(ll) Biosorption 

(F,L,S, 

R-

P,K,T,GL) 

Experiment2

5±2◦C 

Biosorption5

± 

0.2 

- - 25 

- As(III) Biosorption, - Biosorption6

.9 

- - 88 

- As(V) Biosorption, - Biosorption6

.9 

- - 88 

47 Spirulinamaxi

ma 

Zarrouk 

Medium 

Cd(II) Biosorption(

F) 

incubated 

at30 

±1 °C 

 - - 52 

Schlosser

liquid 

M̈edium 

 

Co(II) Biosorption experiment35

°C 

Biosorption5 under12:12pho- 

under 12: 

12photoperiodconditions(12

hrlight:12hrdark 

cycles), 

FTIR,SEM 

Spectropho

tometry 

89 

Schlosser

liquid 

M̈edium 

 

Cu(II) Biosorption experiment35

°C 

Biosorption5 under12:12pho- 

under 12: 

12photoperiodconditions(12

hrlight:12hrdark 

cycles), 

FTIR,SEM 

Spectropho

tometry 

89 

Schlosser

liquid 

M̈edium 

 

Mn(II) Biosorption experiment35

°C 

Biosorption5 under12:12pho- 

under 12: 

12photoperiodconditions(12

hrlight:12hrdark 

cycles), 

FTIR,SEM 

Spectropho

tometry 

89 

- Zn (II) Biosorption experiment35

°C 

Biosorption5 under12:12pho- 

under 12: 12photoperiods 

FTIR,SEM 

Spectropho

89 
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conditions(12hrlight: 12 hr 

darkcycles), 

tometry, 

Zarrouk 

Medium 

Pb(ll) Biosorption(

F) 

anddesorptio

n 

- Biosorption5

.5 

- - 90 

48 Spirulinamaxi

ma, 

strainCTM-02 

 

 

 

 

Spirulinaplate

nsis 

 Cd(II) Biosorption incubated 

at30 

±1 °C 

- - - 91 

Aqueousa

rtificialC

ulture 

Medium 

Cd(II) Biosorption(

F) 

6hrs 

exposure(b

othlight 

anddarktub

es) 

- under 

illuminatedanddarkcondition

s 

AAS, 

Spectropho

tometry 

45 

Aqueousa

rtificial 

Culture

Medium 

Cu(II) Biosorption 

(F) 

6hrs 

exposure(b

othlight 

anddarktub

es) 

- under illuminated and dark 

conditions 

AAS, 

Spectropho

tometry 

45 

Zarrouk 

Medium 

Hg(II) Biosorption 

(F, L) 

experiment

at 

22°C 

Biosorption6 fluorescentlighting AAS, 

Spectropho

tometry 

17 

Zarrouk

Medium 

Pb (ll) Biosorption 

(L) 

Grownat 

20°C 

Culture 

Medium4- 

5.5 

fluorescent 

lamp(40W,4000lux), 

in cycles of 12-hlight 

followed by12hofdarkness. 

Statistical 19 

- Co(II) Biosorption (F,L) 24±1 °C Biosorption6 - SEM, 

Statistical 

46 

- Cu(II) Biosorption 

(F, L) 

24±1 °C Biosorption6 - SEM, 

Statistical 

46 

- Zn (II) Biosorption 

(F, L) 

24±1 °C Biosorption6 - SEM, 

Statistical 

46 

- Al(III) Biosorption experiment20 

°C 

Culture Medium8-9 - FTIR, AA, 

Neutron 

Activation

Analysis, 

AAC 

spectromet

er 

20 

- Ba(II) Biosorption experiment20

°C 

Culture Medium8-9 - FTIR, 

AAS, 

Neutron 

Activation

Analysis, 

AACspectr

ometer 

20 

- Cr(III) Biosorption Experiment 

20°C 

Culture Medium8-9 - FTIR, 

AAS, 

Neutron 

Activation

Analysis, 

AACspectr

ometer 

20 

- Fe(II) Biosorption Experiment 

20°C 

Culture Medium8-9 - FTIR, 

AAS, 

Neutron 

Activation

Analysis, 

AAC 

spectromet

20 
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er 

- Sr Biosorption Experiment 

20°C 

Culture Medium8-9 - FTIR, 

AAS, 

Neutron 

Activation

Analysis, 

AACspectr

ometer 

20 

- Zn (II) Biosorption Experiment 

20°C 

Culture Medium8-9 - FTIR, 

AAS, 

Neutron 

Activation

Analysis, 

AAC 

spectromet

er 

20 

- Re (VII) Biosorption (F,L) Experiment 

20°C 

Biosorption 

2 

- FTIR, 

AAS, 

Neutron 

Activation

Analysis, 

AAC 

spectromet

er 

20 

  Zarrouk 

Medium 

Hg(II) Biosorption 

(F) 

-  -  92 

- Cu(II) Biosorption Grownat 

30 °C 

Culture 

Medium 

7.5 

- AAS 93 

49 Spirulinaplate

nsis 

(UTEX1926) 

- Cu(II) Biosorption Grownat 

30 °C 

Culture 

Medium 

7.5 

- AAS 93 

 ulina platensis 

TISTR8217 

Zarrouk 

Medium 

Cd(II) Biosorption 

(L) 

cadmiums

olution 

wascontinu

ouslystirre

dat26 

±2°C 

Biosorption7 - TEM 94 

50 Spirulinasp - Pb(ll) Biosorption 

(L) 

Inoculated 22-

26◦C 

- under 

lightgeneratedbya40Wwhite 

fluorescent lamp. 

- 29 

Zarrouk 

Medium 

Cu(II) Biosorption 

(L) 

35◦C CultureMedi

um 

7.5-8.5 

natural sunlight. Spectropho

tometry, 

AMA 

95 

Zarrouk 

Medium 

Cd(II) Biosorption 

(L) 

35◦C Biosorption7 - - 95 

Zarrouk 

Medium 

Cr(III) Biosorption 

(L) 

35◦C Biosorption7 - - 95 

Zarrouk 

Medium 

Cu(II) Biosorption 

(L) 

35◦C Biosorption7 - - 95 

- As(V) Biosorption 

(F,L) 

roomtempe

rature, 

whichwas 

∼35◦C. 

Biosorption6

.0± 

0.5. 

- SEM, 

IRspectra 

96 

- Cd(II) Biosorption (F,L) roomtempe

rature, 

which was 

∼35◦C. 

Biosorption6

.0± 

0.5. 

- SEM, 

IRspectra 

96 

- Cu(II) Biosorption (F,L) Room 

temperatur

Biosorption6

.0± 

- SEM, 

IRspectra 

96 
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e, 

which was 

∼35◦C. 

0.5. 

- Ni(II) Biosorption (F,L) roomtempe

rature, 

whichwas 

∼35◦C. 

Biosorption6

.0± 

0.5. 

- SEM,IRsp

ectra 

96 

Zarrouk 

Medium 

Cd(II) Biosorption 32◦C CultureMedi

um 

9.2 

- AAS,Statis

tical 

97 

Zarrouk 

Medium 

Cr(II) Biosorption 32◦C CultureMedi

um 

9.2 

- AAS,Statis

tical 

97 

Zarrouk 

Medium 

Pb(ll) Biosorption 32◦C CultureMedi

um 

9.2 

- AAS,Statis

tical 

97 

- Cr(III) Biosorption driedat105

◦C 

CultureMedi

um 

7 

- Spectropho

tometry, 

TEM 

98 

51 Stigonemasp. - Cd(II)  Experimen

t 

25±2◦C 

CultureMedi

um 

7.5 

- - 21 

52 Synechococcu

sPCC6301 

BG11 Cr(VI) Biosorption(

F) 

23 Culture Medium8 12/xmol photon m -2 s -1 

provided bywhitefluorescent 

tubes 

- 55 

53 Synechococcu

s sp. 

HGZ 

Medium 

Cr(VI) Biosorption 

(F, 

L) 

25◦C Biosorption2 undercontinuous 

illumination(2klx) 

FTIR 99 

HGZ 

Medium 

Pb(II) Biosorption 

(F, 

L) 

25◦C Biosorption3 undercontinuous 

illumination(2klx) 

FTIR 99 

- Cd(II) Biosorption - - - SEM,TEM

,FTIR 

100 

BG11 Cr(Vi) Biosorption(

F, 

L) 

dried 

at60°Cfor 

24hbeforeu

se 

Biosorption2 undercontinuous 

illumination 

- 101 

54 Synechocystis 

sp 

BG11 Cu(II) Biosorption (F,L) driedat60°Cfor

24 

hbeforeuse 

Biosorption5 under continuousillumination - 101 

BG11 Ni(II) Biosorption (F,L) driedat60°Cfor

24 

hbefore 

use 

Biosorption4

.5 

under continuousillumination - 101 

BG11 Sb(III) Biosorption(

F, 

L) 

25◦C CultureMedi

um 

7 

- FTIR 102 

55 Synechocystis 

sp. 

BASO670 

BG11 Cd(II) Biosorption(

L, 

F),Desorptio

n 

25◦C CultureMedi

um 

6.8 

- EDX,SEM 103 

BG11 Cr(VI) Biosorption 25◦C CultureMedi

um 

6.8 

- EDX,SEM 103 

BG11 Cd(II) Biosorption (L,F), 

Desorption 

25◦C Culture Medium6.8 - EDX,FAA

S,SEM 

103 

BG11 Cr(VI) Biosorption, 25◦C CultureMedi

um 

6.8 

- EDX,FAA

S,SEM 

103 

56 Tolypothrix - Cd(II) Biosorption - Culture - EDX,TEM 53 
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tenuisTISTR80

63 

Medium7.0 

- Cu(II) Biosorption - Culture 

Medium7.0 

- EDX,TEM 53 

- Pb(ll) Biosorption - Culture 

Medium7.0 

- EDX,TEM 53 

- Zn (II) Biosorption  Culture 

Medium7.0 

- EDX,TEM 53 

 

Cadmium (Cd)’ was also removed by many blue-

green algae species, i.e., cyanobacteria. The 

following species are shown biosorption processes 

with the help of different isotherms for the removal 

of metal atoms. Spirulina maxima show Freundlich 

isotherm 
52

, Anabaena doliolum Ind1 shows 

Langmuir 14 & Freundlich isotherm 
42

. Anabaena 

variabilis NIES 23 by the process of biosorption 

removes themetal 
53

; Anacystis nidulans removes 

metal by biosorption, which follows the Freundlich 

isotherm 
45

. Anabaena inaequalis shows Freundlich 

isotherm
51

. Neodymium (Nd)’ is a rare earth metal 

that was removed by a sorption mechanism by 

Aphanothece sacrum 
54

. ‘Rhenium (Re)’ also a 

transition metal that was removed by Spirulina 

platensis with the help of Langmuir & Freundlich 

isotherm 
47

.  

In this study we find that among 79 species of 

cyanobacterial strains listed in Table 1, Cadmium 

(Cd) with II oxidation state is highest and 

potentially removed by a maximum number of 

species, approximately 60% of the total listed 

species. Copper (Cu) & Lead (Pb) holds the second 

and third position, respectively for removal. Apart 

from those, Cobalt (Co), Nickel (Ni), Zinc (Zn), 

and Chromium (Cr) show significant action. All 

metal ions are listed in Fig. 4 with a bar diagram. 

 
FIG. 6: DIFFERENT TYPES OF ISOTHERMS IN BIO-

SORPTION PROCESS 

Influence of Phonthe Process of Biosorption: In 

the removal process of cyanobacteria one of the 

major and vitalabiotic factors is Ph which was 

varying in awiderange. Here in t is a section all pH 

values are discussed, and in many literatures the pH 

value was reported as a growth medium pH or as a 

removal medium pH. Many species were cultured 

at different pH levels, and the bio-removal process 

occurs at different pHs. In Table 1 their listed pH 

levels with culture media as well as removal media. 

Culture media’s pH is important for biomass 

development, and those biomasses then process 

heavy metal removal at different pH levels; this 

phenomenon varies from species to species. For 

example, seven species of a particular genus 

Anabaena i.e., a cyanobacterial species, were 

reported in the range of pH 2-8. A. cylindrica was 

grown in neutral culture medium i,e pH 7 12,13, 

whereas in & A. doliolum Ind1, it was also cultured 

at the same pH i.e. pH714. 

In the Culture medium two species of Anabaena 

were grown, Anabaena subcylindrical, which was 

in pH 7.8 16, & Anabaena variabilis, pH 8 
55

. In 

the acidic medium (pH4-5) A. spiroides was grown 
50

 and in the last A. sphaerica reported in a wide 

range from acidic to basic but Pb and removed 

maximum at pH 3 & pH 5.5 respectively by the 

help of biosorption 
15

. 

The pH of the extracellular matrix highly 

influences the process of biosorption. It has been 

observed by 
20, 56

 that the moderately high pH 

favors most HM species' physical processes. The 

group of researchers has reported the same in the 

case of Cr, Pb, and Cd 
46

. The lower pH favors the 

increased concentration of protons in the 

extracellular matrix, which inhibits the cationic 

HMs from binding with the anionic groups, 

including phosphate and amides on the EPS 

surface.  

The overcrowded protons get dissolved in the 

higher pH which favors the HMs to bind with the 

anionic groups in turn incrementing the rate of 

biosorption. Though at very alkaline pH, formation 
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of metal hydroxides ions tends to lower the 

adsorption rate owing to the precipitation of the 

metal hydroxides. 

Temperature and Light in Tensity as in 

Fuencing Factors: Temperature is one of most 

important a biotic factors responsible for the 

removal of heavy metals by cyanobacteria.  

In most of the species of cyanobacteria the 

temperatures were reported in a wide range. From 

Fig. 3 we demonstrate the range of temperature in 

which removal actions were performed. Individual 

cyanobacterial strains' optimal temp also shown in 

Table 1. We conclude that the temperature between 

20°C to 45° C shows a wide range of optimal 

growth and optimal experimental temperature for 

79 cyanobacterial species in Table 1, which 

conducts the heavy metal removal process. Light 

intensity plays a major role in removing heavy 

metal in the cyanobacteria in Abiotic conditions. 

Under the genus of ‘Anabaena’, many species can 

remove heavy metal, and different articles suggest 

different light intensity and mode for removing 

heavy metals. In Anabaena cylindrica under 

constant light at the height of 170 μEm-2s-

1(photosynthetic ally active radiation) 12, cool 

white fluorescent lights (at intensity 900 lux), 12-h 

light/darkcycle 
57

, was capable of acting as a metal 

removal agent. In Table 1 here 
79

 cyanobacterial 

species with different genera show different and 

modified light intensity modes and light color. In 

this study, we can say that light acts as an abiotic 

component that regulates the removal process with 

unknown mechanisms. 

CONCLUSION: In the study, we found that 

cyanobacteria have a tremendous ability to remove 

heavy metals from the surrounding environments. 

The BG11 medium shows the highest rate in the 

growth of many species of the cyanobacterial 

genus, whereas the RC saline medium shows the 

lowest growth of the cyanobacteria. Different 

processes did the heavy metal removal among all 

the process biosorption shows the maximum 

removal potential, whereas eutrophication shows 

the minimum result. Various types of isotherms 

were followed in the biosorption process, among 

them Langmuir isotherm and Freundlichi so therm 

shows 33.3% and 36.8% efficiency respectively to 

support the biosorption process. Apart from that, 

many other isotherms also show biosorption 

processes. In this study, we found that 

cyanobacteria remove the most amount of 

Cadmium (Cd), Copper (Cu), and lead (Pb), 

respectively. Abiotic factors like temperature, pH, 

and light intensity also take a crucial role in the 

removal process, and we can say that those abiotic 

factors can regulate this process. In this study, we 

noticed that the temperature range between 20-45-

degree Celsius is the optimal temperature for 

cyanobacterial growth, and this wide range of 

temperatures exhibits potential results. So, we can 

say that with the help of many abiotic factors and 

different optimal growth media, cyanobacteria are 

capable of 18 different types of heavy metals with 

its surrounding media. The clear mechanism of this 

heavy metal removal is not crystal clear nowadays, 

so it is an emerging research area for today's 

researchers. Its result will go for mankind's 

wellness. 
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