IJPSR (2022), Volume 13, Issue 12

INTERNATIONAL JOURNAL

(Research Article)

Received on 06 April 2022; received in revised form, 18 May 2022; accepted, 03 June 2022; published 01 December 2022

HPLC METHOD DEVELOPMENT AND VALIDATION OF SPIRONOLACTONE IN TABLET DOSAGE FORMS IN PRESENCE OF IMPURITIES AND DEGRADANTS

Rini Singhal^{*}, Chhaya Cauhan, Preeti Sharma and Monika Sachdeva

Raj Kumar Goel Institute of Technology, Ghaziabad - 201003, Uttar Pradesh, India.

Keywords:	ABSTRACT: An isocratic reversed-phase HPLC method was developed
Isocratic HPLC, Canrenone, β-isomer,	and validated to estimate and separate spironolactone and its related
limit of detection, Forced degradation	substances in its tablet dosage forms. Estimation and separation were
Correspondence to Author:	achieved on Symmetry C-8 analytical column (150X3.9) mm, 5µm, using
Rini Singhal	Water, Tetrahydrofuran (THF), and Acetonitrile (ACN) in the ratio of
Rai Kumar Goel Institute of	77:21:2 v/v as mobile phase at the flow rate of 20 µl. UV photodiode
Technology, Ghaziabad - 201003,	array (UV PDA) detector detects the peaks at the wavelength of 254 and
Uttar Pradesh, India.	283 nm. Validation studies were carried out for specificity, accuracy,
	precision, limit of detection (LOD), and quantitation (LOQ). Validation
E-mail: rini.pharma20@gmail.com	studies revealed that the method is simple, reliable and reproducible. The
	limit of detection and limit of quantitation for spironolactone, canrenone,
	and β -isomer was achieved 0.018% and 0.053%, 0.022% and 0.66% and
	0.028%, and 0.084%, respectively. Forced degradation studies were
	carried out for stability testing, and system suit parameters were also
	performed to test the method.

INTRODUCTION: Spironolactone Fig. 1 is a synthetic γ - lactone steroid structure similar to aldosterone, a natural adrenocortical hormone 1 . It is a competitive antagonist of mineralocorticoid inhibiting mineralocorticoids' receptor. thus functions. Due inhibition to the of mineralocortecoid activity it increases the excretion of sodium and water and retains potassium. As it improves potassium retention, it is used as potassium-sparing diuretic Anti mineralocorticoid activity of spironolactone makes it suitable for use in the treatment of hypertension, heart failure ³, hypokalemia, conn's syndrome ⁴, primary aldosteronism hirsutism and complications of liver cirrhosis⁷.

Spironolactone is a prodrug rapidly metabolized in the liver. The active metabolites of spironolactone are Canrenone and 7- α - methylthiospironolactone⁸.

An isocratic reversed-phase HPLC method was developed and validated to determine Spironolactone and its related substances in the tablet dosage form.

MATERIALS AND METHODS: Chemical and Reagents:

Dipharma provided spironolactone, canrenone, and β -isomer standards. Canrenone and β -isomer were also obtained from Dipharma. Tablets containing 25mg, 50mg, and 100mg of spironolactone were purchased from the market.

HPLC grade acetonitrile and tetrahydrofuran were obtained from Merck Ltd (Mumbai) and water (HPLC grade) was obtained from Milli-Q RO water purification system.

All other reagents used in the study were of analytical grade.

Instrument and Chromatographic Condition: The chromatographic system that was employed for the development and validation of the method for related substances was the waters Acquity model with UV-PDA detector and Empowered software.

Selection of Chromatographic Conditions:

Wavelength Selection: Various wavelengths were tested, and best response was reflected at 283 nm for spironolactone and canrenone and 254 nm for β -isomer.

FIG. 4: CHROMATOGRAM FOR WAVELENGTH SELECTION FOR CANRENONE, SPIRONOLACTONE AND B-ISOMER

Buffer and pH Selection: Water, THF, and ACN were used in various proportions during trials, and finally, Water: THF: ACN in the ratio of 77:21:2 was selected.

Column Selection: Initially, trials were carried out on various columns like kromasil C-8(150*4.6)5 μ m, Symmetry C-8 (150*4.6), 5 μ m etcetera but finally, good resolution between Canrenone and main peak (spironolactone) was achieved on symmetry C-8(150*3.9), 5 μ m column.

Diluent Selection: Diluent was kept the same as mobile phase, *i.e* Water: THF: ACN in the ratio of 74:18:8.

Test concentration & injection volume: Concentration of the test solution and the standard solution were kept at 2500 ppm and 7.5 ppm, respectively, while injection volume was kept 20µl.

TABLE 1:	CONDITIONS	FOR HPLC
	CONDITIONS	I OR III DO

HPLC Column	Symmetry C-8 (150X3.9)
	mm, 5μm
Injection Volume	20µl
Flow Rate	1 ml/min
Column Temperature	40°C
Sample Temperature	20°C
Run Type	Isocratic
Mobile Phase	Water: THF: ACN :: 77:21:2
Wavelength	254nm, 283nm

Chromatographic analysis was performed on Symmetry C-8 (150 mm X 3.9 mm), 5 μ m column, which was maintained at a temperature 40°C. The mobile phase consisting of water: tetrahydrofuran: acetonitrile in the ratio of 770:210:20 was used at a flow rate of 1ml/min, and the injection volume was kept 20 μ l for the same. For the standard solution, the run time was kept 40 min, while for sample run time was kept 75 min. Detection was performed at 254 nm and 283 nm wavelengths.

Preparation of Solutions:

Mobile Phase Preparation: For the preparation of the mobile phase, Milli-Q water was filtered through a 0.2 μ m membrane filter and then mixed well with water, tetrahydrofuran, and acetonitrile in a ratio of 770:210:20. The mobile phase thus prepared was then sonicated for 5 minutes to degas the mixture and then used as mobile phase.

Diluent Preparation: Diluent was prepared by filtering Milli-Q water through a 0.2 μ m membrane filter. Water was then mixed well in composition water: Tetrahydrofuran: Acetonitrile in the ratio of 740:180:80 and finally degassed in ultrasonic bath.

Standard Preparation: Spironolactone, canrenone, and β -isomer standard stock solutions were prepared in 10 ml volumetric flask by dissolving 2.5 gm of each standard in 1ml THF and then making up the volume up to 10 ml with the diluent. Following this, 3 ml of each stock solution was transferred to a 100 ml volumetric flask, and their volume was made upto100 ml with the diluents.

Preparation of System Suitability Solution: Standard solution was used to evaluate system suitability parameters. **Preparation of test Solution:** Average weight of ten tablets was determined and was crushed to a fine powder. The sample powder equivalent to about 62.5 mg of spironolactone was accurately weighed and transferred to 25 ml volumetric flask, and 2.5 ml tetrahydrofuran were added to it. Then the solution was degassed for 5 minutes on an ultrasonicator. 15 ml diluent was added to this reaction mixture and again sonicated for 30 minutes with intermittent shaking in cool water. The volume of the reaction mixture was made up of the diluents, and finally, the prepared test solution was filtered through 0.2 µm nylon membrane filter.

RESULT AND DISCUSSION:

Method Development and Optimization: Many trials were performed to achieve better resolution and separation. Various mobile phases were tried in different compositions in isocratic mode to separate the peaks. The trials were started with water and methanol as a mobile phase, but peak separation was not achieved between β - isomer, and canrenon, and some unknown peaks also appeared. So, the mobile phase was changed to Water: THF: ACN in the ratio 74:18:8, which leads to better separation but still, the main peak was not base to base separated. Then, mobile phase composition was optimized to achieve the resolution, and the optimized method was validated, but during base degradation studies, an unknown impurity peak interferes with the spironolactone peak. Many trials were performed to separate the main peak from the unknown peak. Finally, well-separated a chromatogram was attained with the mobile phase composition Water: THF: CAN in the ratio of 77:21:2.

FIG. 5: CHROMATOGRAM OF SPIRONOLACTONE

International Journal of Pharmaceutical Sciences and Research

TABLE 2: CHROMATOGRAPHIC PARAMETERS FOR ABOVE CHROMATOGRAM

S. no.	Name	Retention	Area	%	USP	USP	USP Plate	Purity1
		Time		Area	Resolution	Tailing	Count	Flag
1	Peak1	4.841	1503256	1.58	na	1.16	343	Yes
2	Peak2	13.351	64164	0.07	10.70	1.03	9815	No
3	Peak3	14.834	61252	0.06	2.30	0.97	6564	Yes
4	Peak4	16.549	2915	0.00	2.33	0.85	3755	No
5	Canrenone	18.600	165063	0.17	2.84	1.01	10567	No
6	Peak6	19.777	174831	0.18	1.53	1.02	9779	Yes
7	Peak7	20.589	491	0.00	1.56	1.01	123353	No
8	Spironolactone	22.268	92858136	97.30	2.60	0.70	7127	No
9	Peak9	24.422	5468	0.01	2.62	1.13	21682	No
10	Peak10	25.143	2499	0.00	1.23	1.20	44061	No
11	B -isomer	26.506	85749	0.09	1.71	1.02	10791	No
12	Peak12	29.695	21190	0.02	2.89	0.99	8675	No
13	Peak13	37.722	37192	0.04	6.02	1.02	10076	No
14	Peak14	46.079	8051	0.01	6.10	0.96	11456	No
15	Peak15	56.195	18804	0.02	6.04	0.91	6005	No
16	Peak16	114.351	427205	0.45	17.40	1.03	10392	No

Method Validation:

Specificity: For performing specificity studies, the chromatogram of diluent was used as blank and compared with the chromatogram of spironolactone

sample spiked with all the known impurities. It is depicted in the chromatogram that all the peaks are well separated with good resolution.

FIG. 6: CHROMATOGRAM FOR BLANK SAMPLE

FIG. 7: CHROMATOGRAM FOR SPIKED SAMPLE

TABLE 3: COMPONENTS OF SPECIFICITY

S. no.	Name	Retention	Area	% Area	USP	USP	USP Plate	Purity
		Time			Resolution	Tailing	Count	1 Flag
1	Peak1	4.682	25770	0.03	na	1.50	690	No
2	Peak2	13.400	74759	0.08	14.18	1.03	9434	No
3	Peak3	14.773	31028	0.03	2.31	1.06	9916	No
4	Canrenone	18.699	87440	0.09	5.73	1.02	10555	No
5	Peak5	19.892	7578	0.01	1.70	0.90	15472	No
6	Peak6	20.667	1420	0.00	1.12	0.87	11606	No
7	Spironolactone	22.417	97956323	99.56	1.92	0.69	6769	No
8	B -isomer	26.690	97850	0.10	4.01	1.03	10633	No
9	Peak9	29.917	39560	0.04	2.63	0.89	7089	No
10	Peak10	38.037	64219	0.07	5.26	1.04	11151	No

Linearity: Injection Linearity:

For Injection linearity studies, a test solution of 31.9 ppm was prepared and injected with different

injection volumes (10, 20, 30, 40, and 50 μ l). A linear graph was obtained between peak area and injection volume using regression analysis. It indicates that the developed method is linear.

TABLE 4: COMPONENTS FOR LINEARITY

Injection	RT (min)	Inj. Vol. (µL)	Area	\mathbf{R}^2
Inj-1	22.268	10	65787438	0.999
Inj-2	22.268	20	165717521	
Inj-3	22.268	30	267474670	
Inj-4	22.268	40	371221678	
Inj-5	22.268	50	464389120	

Detector Linearity: Test solutions were prepared in eight concentrations and injected into the HPLC column. The result obtained depicts that the test solutions are linear between 40- 160% of analyte concentration.

TABLE 5: DETECTOR LINEARITY

Conc. Inj. (ppm)	Vol Injected (µL)	Area	Average Area
15.9	20	28949889	28904466
	20	28749689	
	20	29013819	
25.5	20	46329068	46029068
	20	45429068	
	20	46329068	
31.9	20	58081853	57788809
	20	57121824	
	20	58162749	

51.0	20	91632831	92390721
	20	92798212	
	20	92741121	
63.8	20	116163707	114393707
	20	117153707	
	20	109863707	
102.0	20	185716272	185885335
	20	186016321	
	20	185923412	
127.5	20	232145340	232673904
	20	233255129	
	20	232621243	
255.0	20	463990997	463003586
	20	459189881	
	20	465829881	

Accuracy: The accuracy of the developed method was determined by injecting the test solution sample in triplicates in three different levels of 80%, 100%, and 120% of the assay concentration,

i.e., a total of nine determinations of each level. Percentage recovery for spironolactone was obtained as 100.18, 100.39, and 100.20, respectively.

TABLE 6: RESULTS OF PERCENTAGE RECOVERY

S. no.	Percentage of spironolactone	% Recovery	Average
1	80%/1	100.20	
2	80%/1	100.29	100.18
3	80%/1	100.06	
4	100%/1	100.64	
5	100%/2	100.51	100.39
6	100%/3	100.04	
7	120%/1	100.23	
8	120%/2	100.07	100.20
9	120%/3	100.31	

Precision: Readings for each injected sample are presented in the table and these findings are précised and % RSD was found to be 0.134%.

TABLE 7: RESULTS FOR PRECISION

Injection No.	Inj. Vol. (µL)	RT (min)	Area	Average Area	Standard deviation	% RSD
Inj-1	20	22.268	92858136			
Inj-2	20	22.268	92858223			
Inj-3	20	22.268	92552831	92807461	124742.9589	0.134
Inj-4	20	22.268	92858204			
Inj-5	20	22.268	92858721			
Inj-6	20	22.268	92858651			

Limit of Detection (LOD) and Limit of Quantitation (LOQ): The retention time for Spironolactone was 22 minutes; relative retention time, LOD, and LOQ for spironolactone, Canrenone, and β -isomer are mentioned in **Table 8**.

TABLE 8: RESULTS FOR LOD AND LOQ

Name	Relative retention time (RRT)	Tentative LOD%	Tentative LOQ%
Spironolactone	1.00	0.018%	0.053%
Canrenone	0.84	0.022%	0.066%
β- Isomer	1.19	0.028%	0.084%

Robustness: Robustness studies were performed to investigate the effect of small changes in temperature, flow rate, and pH of the mobile phase

on the developed method. The data obtained from robustness studies are summarized in the table below, which shows that the method is robust.

S. no.	Name	Retention Time	Area	USP Tailing	USP Plate Count		
		Control o	ondition				
1	Spironolactone	22.268	92858136	0.70	7127		
2	β- Canrenone	18.600	165063	1.01	10567		
3	β-isomer	26.506	85749	1.02	10791		
		Flow 1	ninus				
1	Spironolactone	22.421	93018112	0.79	8325		
2	β- Canrenone	18.701	183043	1.18	11467		
	β-isomer	26.635	87271	1.23	9891		
		Flow	plus				
1	Spironolactone	22.211	91758121	0.72	7998		
2	β- Canrenone	18.217	154183	1.21	11152		
3	β-isomer	26.124	83536	1.13	10985		
		pH n	inus				
1	Spironolactone	22.400	92997225	0.77	7343		
2	β- Canrenone	18.642	176068	1.17	10929		
3	β-isomer	26.689	86532	1.60	11232		
		pH j	olus				
1	Spironolactone	22.121	92947267	0.73	7235		
2	β- Canrenone	18.465	174171	1.15	11371		
3	β-isomer	26.322	83976	1.19	10826		
		Temperat	ure minus				
1	Spironolactone	22.127	92725612	0.80	7245		
2	β- Canrenone	18.434	164061	1.23	10534		
3	β-isomer	26.356	85890	1.37	10667		
	Temperature plus						
1	Spironolactone	21.998	92846739	0.78	7234		
2	β- Canrenone	18.113	16986	1.10	10673		
3	β-isomer	26.204	85458	1.13	10538		

TABLE 9: ROBUSTNESS PARAMETERS

Forced Degradation Studies: Forced degradation studies were performed as per ICH guideline ICHQ1A.

Forced degradation studies were performed to establish stability, indicating assay method under stressed conditions for spironolactone. **Base Degradation Studies:** For base degradation studies 1 ml stock solution of spironolactone standard drug and sample drug were taken, and 0.2ml 0.1N NaOH was added and refluxed for half an hour at 60°C temperature. 20µl of each sample was injected into HPLC column, and stability studies were performed.

From the chromatogram below, it is established that all the base degradation peaks of β - canrenone,

 β - isomer and spironolactone are well separated, and the purity of each peak is up to par.

FIG. 10: CHROMATOGRAM SHOWING BASE DEGRADATION STUDIES

TABLE 10: RESULTS FOR BASE DEGRADATION STUDIES

S. no.	Name	Retention	Area	%	USP	USP	USP Plate	Purity1 Flag
		Time		Area	Resolution	Tailing	Count	
1	Peak1	4.841	1503256	1.58	NA	1.16	343	Yes
2	Peak2	13.351	64164	0.07	10.70	1.03	9815	No
3	Peak3	14.834	61252	0.06	2.30	0.97	6564	Yes
4	Peak4	16.549	2915	0.00	2.33	0.85	3755	No
5	Canrenone	18.600	165063	0.17	2.84	1.01	10567	No
6	Peak6	19.777	174831	0.18	1.53	1.02	9779	Yes
7	Peak7	20.589	491	0.00	1.56	1.01	123353	No
8	Spironolactone	22.268	92858136	97.30	2.60	0.70	7127	No
9	Peak9	24.422	5468	0.01	2.62	1.13	21682	No
10	Peak10	25.143	2499	0.00	1.23	1.20	44061	No
11	B -isomer	26.506	85749	0.09	1.71	1.02	10791	No
12	Peak12	29.695	21190	0.02	2.89	0.99	8675	No
13	Peak13	37.722	37192	0.04	6.02	1.02	10076	No
14	Peak14	46.079	8051	0.01	6.10	0.96	11456	No
15	Peak15	56.195	18804	0.02	6.04	0.91	6005	No
16	Peak16	114.351	427205	0.45	17.40	1.03	10392	No

Thermal Degradation: To establish thermal studies, 1ml of stock solution of standard drug and samples were exposed to a temperature of 105°C for 72 h. 20µl of each solution was injected into the

HPLC column for thermal studies. From the chromatogram, it has been concluded that all the chromatographic parameters obtained were within range.

FIG. 11: CHROMATOGRAM FOR THERMAL DEGRADATION

International Journal of Pharmaceutical Sciences and Research

TABLE 11: PARAMETERS OF THERMAL DEGRADATION

S. no.	Name	Retention	Area	% Area	USP	USP	USP Plate	Purity1
		Time			Resolution	Tailing	Count	Flag
1	Peak1	2.249	12429	0.02	NA	1.23	3482	No
2	Peak2	3.605	38479	0.05	7.19	1.18	4499	Yes
3	Peak3	4.315	104892	0.13	3.08	1.11	5649	Yes
4	Peak4	5.906	27153	0.03	6.08	1.28	7133	Yes
5	Peak5	8.415	27101	0.03	6.70	1.46	6630	No
6	Peak6	10.767	170748	0.21	5.24	1.04	10038	No
7	Peak7	12.841	8916	0.01	5.21	0.79	20457	No
8	Peak8	13.391	138244	0.17	1.23	1.06	10341	Yes
9	Peak9	14.750	14335	0.02	2.82	0.83	18492	Yes
10	Peak10	15.241	38124	0.05	1.04	1.19	14005	No
11	Peak11	16.185	51358	0.06	1.66	0.95	10297	Yes
12	Peak12	17.108	28893	0.04	1.31	0.95	7231	Yes
13	Canrenone	18.723	6851222	8.34	2.10	0.96	10401	No
14	Spironolactone	22.265	74347235	90.51	4.04	0.73	8032	No
15	B -isomer	26.626	86860	0.11	4.39	1.01	11975	No
16	Peak16	29.774	117675	0.14	2.86	1.06	10599	No
17	Peak17	37.881	28126	0.03	6.28	0.99	15241	No
18	Peak18	46.181	16897	0.02	4.45	0.83	10013	No
19	Peak19	52.061	15857	0.02	2.62	1.07	7126	No
20	Peak20	62.917	16850	0.02	4.51	1.04	8280	No

CONCLUSION: A simple, linear, accurate, precise, and robust HPLC method for the estimation and separation of Spironolactone and degradants (Canrenone and β -isomer) in tablet dosage forms was developed and validated as per ICH guidelines. Various analytical parameters like mobile phase, mobile phase composition, diluents, column temperature, type of column, and flow rate were tested. Best peak separation between Spironolactone, Canrenone, and β -isomer and peak purity of all the peaks were achieved with mobile phase Water: Tetrahydrfuran: Acetonitrile: 77:21:2, symmetry column C-8 (150mmX3.9mm) 5µm, column temperature 40°C, flow rate 1.0ml/min, wavelength 254 nm and 283 nm. The parameters like linearity, accuracy, precision, and robustness were evaluated. Forced degradation studies were also performed to separate the peaks of spironolactone and beta canrenone. The developed method is specific and can quantify spironolactone in presence of the degradent products. Therefore, the method can be successfully used in routine work for the quantification of spironolactone in tablet dosage form available on the market.

ACKNOWLEDGMENTS: The authors would like to thank RKGIT, Pharmacy for providing laboratory support.

CONFLICTS OF INTEREST: The authors have no conflicts of interest regarding this investigation.

REFERENCES:

- 1. Layton AM, Eady EA, Whitehouse H, Del Rosso JQ, Fedorowicz Z and Van Zuuren EJ: Oral Spironolactone for Acne Vulgaris in Adult Females: A Hybrid Systematic Review. Am J Clin Dermatol 2017; 18(2): 169-191.
- 2. Tekerek E, Şüküroğlu M and Atay O: Quantitative determination of hydrochlorothiazide and spironolactone in tablets by spectrophotometric and HPLC methods. Turk J Pharm Sci 2008; 5(2): 53-66.
- 3. Larik FA, Saeed A, Shahzad D, Faisal M, El-Seedi H, Mehfooz H and Channar PA: Synthetic approaches towards the multi target drug spironolactone and its potent analogues/derivatives. Steroids 2017; 118: 76-92.
- 4. Maulik B, Ketan D and Shital F: Development and validation of RP-HPLC method for simultaneous estimation of furosemide and spironolactone in their combined tablet dosage form. Journal of Pharmaceutical Science and Bioscientific Research 2012; 2(3): 144-147.
- 5. Bravo EL, Dustan HP and Tarazi RC: Spironolactone as a nonspecific treatment for primary aldosteronism. Circulation 1973; 48(3): 491-498.
- Cumming DC, Yang JC, Rebar RW and Yen SS: Treatment of hirsutism with spironolactone. Jama 1982; 247(9): 1295-1298.
- Gabbard RD, Hoopes RR and Kemp MG: Spironolactone and XPB: An Old Drug with a New Molecular Target. Biomolecules 2020; 10(5): 756.
- Takkis K, Aro R, Kõrgvee LT, Varendi H, Lass J, Herodes K and Kipper K: Signal Enhancement in the HPLC-ESI-MS/MS analysis of spironolactone and its metabolites using HFIP and NH 4 F as eluent additives. Analytical and bioanalytical chemistry 2017; 409(12): 3145-3151.

How to cite this article:

Singhal R, Cauhan C, Sharma P and Sachdeva M: HPLC method development and validation of spironolactone in tablet dosage forms in presence of impurities and degradants. Int J Pharm Sci & Res 2022; 13(12): 4991-00. doi: 10.13040/IJPSR.0975-8232.13(12).4991-00.

All © 2022 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)