IJPSR (2023), Volume 14, Issue 6

(Research Article)

Received on 19 October 2022; received in revised form, 19 December 2022; accepted 30 April 2023; published 01 June 2023

QUALITY STANDARDIZATION OF AYURVEDIC FORMULATIONS - SANSHAMANI VATI AND MAHALAXMIVILAS RASA

Priyanka Patil², Madhuree Gawhankar², Shivcharan Bidve² and Santosh Yadav^{*1}

Shree Dhootapapeshwar Limited ¹, Shree Dhootapapeshwar Ayurvedic Research Foundation ², Veer Savarkar Chowk, Panvel, Navi Mumbai - 410206, Maharashtra, India.

Keywords:

Sanshamani Vati, Mahalaxmi vilas rasa, HPTLC, ICP-OES, XRD, Ayurveda

Correspondence to Author: Mr. Santosh Yadav

QA/QC Manager, Shree Dhootapapeshwar Limited, Veer Savarkar Chowk, Panvel, Navi Mumbai - 410206, Maharashtra, India.

E-mail: santosh.yadav@sdlindia.com

ABSTRACT: Purpose: Sanshamani Vati (SHV) is useful in all types of Jwara, and Mahalaxmivilas Rasa (MLVR) is the best drug in various cardiovascular and respiratory disorders. To maintain the enormous trust in Avurveda, it's necessary to ascertain the quality, efficacy & safety of Ayurvedic formulations on scientific lines using modern techniques. Present work attempts have been made to standardize the traditional Ayurvedic formulations - SHV and MLVR with modern techniques. Method: The formulations were standardized for physicochemical, Elemental and phytochemical screening. The XRD profiling was done for MLVR. Also the authentication of RM used in SHV was done using HPTLC. The validation of the methods for Elemental and phytochemical assays was performed as per ICH guidelines. Results: The Physico-chemical and phyto-chemical screening of Sanshamani Vati, and Mahalaxmivilas Rasa Tablets was done. The HPTLC profile confirms the presence of Berberine at Rf 0.25 \pm 0.02 in SHV and Myristicin at Rf 0.50 ± 0.02 in MLVR. The elemental content of Gold (Au), Iron (Fe), Mercury (Hg) & Copper (Cu) in MLVR was estimated by ICP-OES. HPTLC Densitogram confirms the presence of authenticated Tinospora cordifolia RM in SHV. The XRD profile confirms the absence of free toxic metals – Hg & As. Conclusion: The present work will help understand therapeutic value concerning the quality parameters of the formulations. The standardization parameters presented in this research may serve as a standard reference to set the quality parameters for Sanshamani Vati and Mahalaxmivilas Rasa.

INTRODUCTION: Ayurveda is the world's oldest medical system believed to deal wide range of infections without causing any side effects ¹. This traditional Indian medicine network is entrusted since human existence and plays a vital role in combating and catering to global healthcare needs ².

Recent studies affirmed that about 70-80% of people, including developing countries, now rely on herbal medicines for their primary healthcare compared to modern allopathic drugs ³.

In India, the Ministry of Ayush (Ayurveda, Yoga, Unani, Siddha & Homeopathy) and an advisory coronavirus committee has also published some guidelines and recommendations with preventive management steps as per Ayurvedic practices through boosting immunity and several Ayurvedic medicines for symptomatic management of Coronavirus infection during the pandemic^{4, 5}. In Ayurveda, it is mentioned that the Rasayana Chikitsa or therapy promotes and rejuvenates physical as well as mental health of the body and produces resistance against diseases. As per modern science, the Rasayana therapy enhances immune responsiveness of an organism against pathogens by activating the immune system with immunomodulatory agents of plant origin ⁶. In Ayurvedic Rasayana, many medicinal plants are valued for their therapeutic potential with immunomodulatory, anti-inflammatory, antioxidant, antidepressant activities and have been scientifically proven with promising effect based on the recommendation by Ministry of AYUSH, Govt of India ^{7, 8}.

In Ayurveda, "Rasayana botanicals" such as Shatavari (Asparagus racemosus). Guduchi (Tinospora *cordifolia*) and Ashwagandha (Withania somnifera) known to modulate the immune system and possess antiviral activities are used for rejuvenation by boosting the immune system and alleviating disease condition $^{9-14}$. With reference to Bhavprakash Nighantu (an Ayurvedic text), Guduchi (Tinospora cordifolia) is categorized as "Rasayana"¹⁵ and used for its anti-inflammatory ^{16, 17, 24}, immunomodulatory ¹⁷⁻²⁰, anti-allergic ²⁰, antipyretic ²⁰, antidiabetic ^{17, 20, 21} properties. Sanshamani vati i.e. Guduchi Ghan (concentrated form of decoction) Vati an Ayurvedic preparation, is used as adjuvant in various hospital trials against COVID-19 due to anti-inflammatory, its antimicrobial and immuno-modulation properties 22-25

studies also confirmed the In-silico that phytochemical compounds of Guduchi (Tinospora cordifolia). Berberine and Sitosterol found as most powerful inhibitors against COVID-19^{26, 27}. Tinospora cordifolia is the accepted botanical source for Guduchi in Indian Ayurveda system. Despite of this fact, Tinospora crispa is used as substitute and sometimes as adulterant to Tinospora cordifolia in the formulations due to their similarities ²⁷. Many cases reveal that *Tinospora* crispa might have the negative effect of inducing hepatotoxicity²⁹. To avoid such circumstances, a system must be developed to confirm Tinospora cordifolia species in the formulation instead of Tinospora crispa. In addition to Rasayan botanicals, the Ayurvedic rasa-aushadhis are also having qualities such as instant effectiveness,

requirement in very small dosage and abundant therapeutic utility ³⁰. These *Rasa-aushadhis* have been used to treat chronic ailments since time immemorial²⁹. Mahalaxmivilas Rasa, a herbomineral-metallic preparation, comes under the Khalviya Rasayana (A preparation method of Rasa-aushadhis) 30 . It has broader therapeutic activity in Urdhwa Jatrugata rogas (Upper Respiratory Disorders), kasa (Cough), Pinasa (Chronicrhinitis/sinusitis), Gala Roga (Diseases of throat), Atisara (Diarrhoea), Nasa Roga (Disease of nose), Netraroga (Eye disorder), Mukha Roga (Disease of mouth)^{30, 31}. The *Rasa-aushadhis* are the Formulations made by mercury and incinerated metals and minerals ³⁰. Mercury is an extremely hazardous heavy metal known for its toxicity to ³². It undergoes extensive human health detoxification procedures before being used in any formulation. The toxicity of Mercury is seen mainly due to its elemental and organic form and not due to inorganic form. Inorganic mercury is considered to be the least toxic among the different forms of mercury ³³⁻³⁴.

Considering the therapeutic effect of Sanshamani Vati and Mahalaxmi vilas rasa, the attempt of present work has been made to characterize and validate the formulations with modern techniques and to prove their safety of the formulations. The present work will help understand therapeutic value concerning the quality parameters of the formulations.

METHODS AND MATERIALS:

Chemicals: The Ayurvedic formulations Sanshamani Vati and Mahalaxmivilas Rasa Tablets were procured from Shree Dhootapapeshwar limited stockiest. Batch codes designated were Sample-1, Sample-2 and Sample-3 for each of three batches of these formulations. The manufacturing details of these batches are tabulated in Table 1. Myristicin of purity 98.0% (CAS No. CC60706) was procured from Natural Remedies Private Limited and Berberine of purity 98.0% (CAS No. 633658) was procured from Sigma Aldrich for chromatographic evaluations. The Certified reference standards of Elements Gold (Au) NIST SRM® 3121, Iron (Fe) NIST SRM® 3126a, Copper (Cu) NIST SRM® 3114 and Mercury (Hg) NIST SRM® 3133from Merck with the concentration of 1000 PPM were used for Elemental analysis. All other chemicals and reagents (Butanol, Ethyl acetate, Methanol, Glacial acetic acid, Toluene, Formic acid, Hexane, Hydrochloric acid and Nitric acid) used in analysis were of Analytical grade of Merck.

Product Name	Mahalaxmivilas Rasa	Sanshamani Vati
Manufacturing Reference	Rasayogsagar 2/235	Ayurved Sar Sangrah
Ingredients	Suvarna Bhasma 1 Part	Each tablet contains:
	Abhrak Bhasma 16 Parts	Guduchi Ghana 125 mg
	Shuddha Parad 2 Parts	
	Shuddha Gandhak 8 Parts	
	Vang Bhasma 4 Parts	
	Tamra Bhasma 1 Part	
	Shuddha Hartala 2 Parts	
	Karpoor 2 Parts	
	Jatiphal 2 Parts	
	Jayapatri 2 Parts	
	Shuddha Dhatturbeej 4 Parts	
	Vruddhdaru Beej 4 Parts	

TABLE 1: MANUFACTURING DETAILS OF MAHALAXMIVILAS RASA AND SANSHAMANI VATI

Organoleptic Evaluation: Organoleptic evaluations like colour, taste and texture of the samples of Sanshamani Vati and Mahalaxmi vilas Rasa Tablets were analyzed as preliminary quality check.

Physico-chemical Screening: In Physico-chemical screening, the samples of Sanshamani Vati and Mahalaxmivilas Rasa Tablets were analyzed for various Physico-chemical Parameters such as Hardness, Friability, Disintegration, weight variation, Loss on Drying (LOD), Ash, Acid Insoluble ash (AIA), Water soluble extractive (WSE) and Alcohol soluble extractive (ASE) as per The Ayurvedic Pharmacopoeia of India (API).

HPTLC Instrumentation and Experimental Conditions for Chromatographic Analysis:

HPTLC Instrument Camag with Linomat 5, TLC Scanner 4 and Wincat Software was used for chromatographic analysis of Sanshamani Vati and Mahalaxmi vilas Rasa Tablets.

A twin trough chamber was used for the development of the HPTLC plate. A photo documentation cabinet fitted with High-Resolution camera was used for capturing images at different wavelengths.

Densitometer TLC Scanner 4 equipped with D2 and Tungsten (W) lamp was used to obtain spectra for the quantitative determination of the compound. The solvent systems, wavelengths and lamps used for estimation of Berberine and Myristicin, which gave good resolution are tabulated in **Table 2**.

#	Marker	Extraction	Extraction	Solvent System	Visualization	Lamp	λ_{max}
		solvent	technique			Used	
1	Berberine	Methanol	Reflux on	Butanol : Ethyl Acetate :	Under UV at 366	Mercury	366
			water bath	Glacial acetic acid :	nm	(Hg)	nm
				Water			
				(3:5:1:1) v/v			
2	Myristicin	n-Hexane:	Cold	Toluene : Ethyl Acetate	After derivatization	Deuterium	212
		Chloroform	maceration	(9.8 : 0.2) v/v	with Anisaldehyde	(D2) lamp	nm
		(1:1)			sulfuric acid reagent		

 TABLE 2: CHROMATOGRAPHIC CONDITIONS

Authentication of *Tinospora cordifolia* used in Sanshamani Vati: The Methanolic extract of stem of *Tinospora cordifolia*, *Tinospora crispa* & three batches of Sanshamani vati were applied on TLC plate and the plate was then developed in the mobile phase (Hexane: chloroform: Methanol: Formic acid:: 4: 4: 2: 0.1 v/v/v/v). After spraying with Anisaldehyde sulfuric acid reagent, the plate was Visualize for band, and heated at 110°C for 5 min. The retention factor (RF values) and color of the bands were noted.

Elemental Analysis by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): The samples of Sanshamani Vati and Mahalaxmi vilas Rasa Tablets were digested in a MARS 6 microwave digestion system (CEM corp., USA) equipped with Teflon closed vessels (Easy Prep Plus vessel) for safe operation under 800 psi. The instrumental conditions used for digestion of samples are given in **Table 3**. After completion of digestions, elemental content (Au, Fe, Hg & Cu) were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) using a Perkin Elmer model AVIO 200 with Syngestic software. The instrumental conditions of ICP-OES used for Elemental analysis are given in **Table 4**.

TADLE 2. CEMMADE CMICDOWAVE	DIGEOTION OVOTEM	ODED ATING DAD AMETEDO
TABLE 3: CEM MARS 6 MICROWAVE	DIGESTION SISTEM	UPEKATING PAKAMETEKS

Instrumental Parameters	Gold (Au)	Iron (Fe)	Copper (Cu)	Mercury (Hg)
Acid used for Digestion	Aquaregia	HCL	Aquaregia	Aquaregia
	(HCl : HNO3 :: 3 :1)		(HCl : HNO3 :: 3 :1)	(HCl : HNO3:: 3 :1)
Method	Au	Fe	Cu	Hg
Temperature	170°C	170°C	190°C	170°C
Pressure	650 psi	650 psi	650 psi	650 psi
Ramp Time	15 min	20 min	20 min	20 min
Hold Time	1 min	10 min	15 min	10 min
Cooling Time	15 min	15 min	15 min	15 min

TABLE 4: ICP-OES OPERATING PARAMETERS

Element	Wavelength	Plasma (L/min)	AUX (L/min)	Neb (L/min)	Power (watts)	View Dist.	Plasma View
Gold (Au)	242.795	10	0.2	0.60	1300	15	Radial
Iron (Fe)	238.204	10	0.2	0.60	1300	15	Radial
Copper (Cu)	327.393	10	0.2	0.60	1300	15	Radial
Mercury (Hg)	253.652	10	0.2	0.60	1300	15	Radial

Validation of the Method: The Method validation was performed for Phytochemical Quantification by HPTLC and Elemental Analysis by ICP-OES as per standard ICH guidelines, which included linearity, precision, accuracy, LOD and LOQ ³⁵. The linearity of method was performed by plotting calibration curves. Precision was performed by Repeatability and by estimating intraday and interday readings and %RSD relative standard deviation. Accuracy of analytical methods was expressed as % recovery. This was estimated by adding known concentration of standard solution to pre-analyzed sample solution. Limit of detection (LOD) and limit of quantification (LOQ) were estimated as per formula:

LOD = 3.3 x σ/S and LOQ = 10 x σ/S ,

Where σ = Standard deviation, S = Slope.

X-ray Diffraction (XRD) Profile: X-ray diffraction (XRD) analysis of Mahalaxmi vilas Rasa was carried out using Rigaku Miniflex 600 X-ray diffract meter with operating at 40 kV and 30 mA. The XRD Pattern was recorded for angle ranging from 3^{0} to 100^{0} at a scanning rate of 3^{0} /min. and scan step of 0.01^{0} . The absence of

Mercury & Arsenic in free from was confirmed by matching d-spacing with the standard database ICDD PDF-2 2021 (International Center for Diffraction Data).

RESULTS AND DISCUSSION: Sanshamani Vati, and Mahalaxmi vilas Rasa Tablets were characterized as brownish black to black and Greenish gray to dark gray in colour, respectively with round coated biconvex shape. The Physicochemical screening of both Sanshamani Vati, and Mahalaxmi vilas Rasa Tablets showed Friability less than 1%, Hardness greater than 1.5 kg/cm², Disintegration time less than 60 min and Loss on drying (LOD) less than 6 %. Sanshamani Vati Tablets showed Ash content less than 30 %, Acid insoluble ash (AIA) less than 2 %, Water soluble Extractive (WSE) more than 45 % and Alcohol soluble Extractive (ASE) more than 20 % Table 5. All the samples of Sanshamani Vati, and Mahalaxmi vilas Rasa were found to comply with the weight variation test as per API ³⁶. Weight variation is an important factor that is affected by the tooling of the compression machine, head pressure, machine speed and flow properties of the powder, powder or granulate density and particle

size. The friability test helps to determine the tablet's physical strength, which is attributed to the tablet breaking force. The disintegration test is a measure of the time required under specified conditions for the tablets to disintegrate into particles. Loss on drying (LOD) measures the

amount of water and volatile matter in a sample when the sample is dried under specified conditions. This is the major factor responsible for the deterioration of the drugs and formulations. Low moisture content is always useful for higher stability of drugs ³⁷⁻³⁸.

TABLE 5: PL GIVE SPACING IN BETWEEN SANSHAMANIVATI & MAHALAXMIVILAS RASA ANALYSIS DATA

Product name		SANSHAMANI VATI	
Batch code	Sample - 1	Sample - 2	Sample - 3
Colour	Brownish black coated tablets	Brownish black coated tablets	Brownish black coated tablets
Shape	Round convex	Round convex	Round convex
Friability (% w/w)	0.001 % w/w	0.002 % w/w	0.001 % w/w
Disintegration Time (min.)	18 min.	15 min.	20 min.
Hardness (kg/cm ²)	2.7 kg/cm2	3.0 kg/cm2	2.0 kg/cm2
Thickness (mm)	3.48 mm	3.40 mm	3.33 mm
Diameter (mm)	6.48 mm	6.48 mm	6.6 mm
Average Weight (mg)	127 mg	127 mg	128 mg
Weight Variation		e by more than 5% of the average 10% of the average weight.	e weight and none by more than
Loss on Drying (LOD) (%	4.58 % w/w	7.0 % w/w	6.26 % w/w
w/w)			
Ash (% w/w)	21.54 % w/w	20.1 % w/w	14.15 % w/w
Acid Insoluble Ash (AIA)	1.47 % w/w	0.92 % w/w	1.15 % w/w
(% w/w)			
Water Soluble Extractive (WSE) (% w/w)	76.50 % w/w	72.81 % w/w	77.60 % w/w
Alcohol Soluble Extractive	22.2 % w/w	21.96 % w/w	29.7 % w/w
(ASE) (% w/w)			
	Phyto-chemical A	Analysis by HPTLC	
Berberine content in ppm	5 ppm	5 ppm	5 ppm
Product name		MAHALAKSHN	AI VILAS RASA
Batch code	Sample - 1	Sample - 2	Sample - 3
Colour	Greenish gray coated tablets	Greenish gray coated tablets	Greenish gray coated tablets
Shape	Round convex	Round convex	Round convex
Friability	0.006 % w/w	0.05 % w/w	0.02 % w/w
(% w/w)			
Disintegration Time (min.)	44 min.	23 min.	21 min.
Hardness (kg/cm ²)	3.0 kg/cm2	4.33 kg/cm2	4.0 kg/cm2
Thickness (mm)	3.46 mm	3.56 mm	3.57 mm
Diameter (mm)	6.65 mm	6.65 mm	6.67 mm
Average Weight (mg)	162.7 mg	166.3 mg	158.4 mg
Weight Variation	Not more than 2 tablets deviat	e by more than 5% of the average	e weight and none by more than
		10% of the average weight.	
Loss on Drying	5.81 % w/w	4.08 % w/w	5.16 % w/w
(LOD) (% w/w)			
(LOD) (% w/w)	Flemental Ana	lysis by ICP-OES	
		lysis by ICP-OES	1.26 mg/tab
Gold (Au) (mg/tab)	1.50 mg/tab	1.43 mg/tab	1.26 mg/tab
Gold (Au) (mg/tab) Iron (Fe) (mg/tab)	1.50 mg/tab 3.05 mg/tab	1.43 mg/tab 2.96 mg/tab	2.71 mg/tab
Gold (Au) (mg/tab) Iron (Fe) (mg/tab) Mercury (Hg) (mg/tab)	1.50 mg/tab 3.05 mg/tab 2.27 mg/tab	1.43 mg/tab 2.96 mg/tab 2.80 mg/tab	2.71 mg/tab 2.23 mg/tab
Gold (Au) (mg/tab) Iron (Fe) (mg/tab)	1.50 mg/tab 3.05 mg/tab 2.27 mg/tab 0.75 mg/tab	1.43 mg/tab 2.96 mg/tab 2.80 mg/tab 0.86 mg/tab	2.71 mg/tab
Gold (Au) (mg/tab) Iron (Fe) (mg/tab) Mercury (Hg) (mg/tab)	1.50 mg/tab 3.05 mg/tab 2.27 mg/tab 0.75 mg/tab	1.43 mg/tab 2.96 mg/tab 2.80 mg/tab	2.71 mg/tab 2.23 mg/tab

The HPTLC profile confirms the presence of Berberine at Rf 0.25 \pm 0.02 And Myristicin at Rf

 0.50 ± 0.02 in Sanshamani Vati and Mahalaxmi vilas rasa, respectively. The Herbal RM ingredients

Jayapatri & Jayphala (*Myristica fragrans*) contributed to presence of Myristin and Guduchi (*Tinospora cordifolia*) to Berberine.

The metal & mineral ingredients of Mahalaxmivilas rasa, Suvarna bhasma, Abhrak Bhasma, Shodhit Parad & Tamra Bhasma contributed to the content of Gold (Au), Iron (Fe), Mercury (Hg) & Copper (Cu) respectively. The contents of Gold (Au), Iron (Fe), Mercury (Hg) & Copper (Cu) in samples of Mahalaxmi vilas rasa were determined by ICP-OES and results were tabulated in **Table 5**.

Authentication of *Tinospora cordifolia* used in Sanshamani Vati: As shown in Fig. 1, 2 & 3, the methanolic extracts of Sanshamani Vati and *Tinospora cordifolia* confirm the presence of similar major bands at Rf 0.26 (greenish blue), 0.36 (light brown), 0.42 (Gray colour), 0.47 (Purple), 0.52 (Light gray colour) and 0.56 (Light purple), whereas the methanolic extract of *Tinospora crispa* does not show presence of similar band pattern. It confirms the authenticity of raw material used in Sanshamani vati as *Tinospora cordifolia*.

FIG. 1: HPTLC FINGERPRINT OF, TRACK 1 - *TINOSPORA CORDIFOLIA*, TRACK 2 TO 4 - SANSHAMANI VATI, TRACK 5 - *TINOSPORA CRISPA*

FIG. 2: DENSITOMETRIC UV SPECTRA OF SANSHAMANI VATI AND TINOSPORA CORDIFOLIA

FIG. 3: HPTLC DENSITOGRAMS OF *TINOSPORA CORDIFOLIA*, SANSHAMANI VATI AND *TINOSPORA CRISPA* AFTER DERIVATIZATION AT 540NM

Method Validation by HPTLC: For development of a successful method the first important step is to optimize the mobile phase. Trials with various solvent system combinations carried out mobile phase optimization. The chamber saturation time was optimized to 20 min at room temperature with relative humidity $38 \pm 2\%$. The chromatographic run was roughly 90 mm, and the distance between two tracks was 15 mm. The optimized chromatographic conditions are given in **Table 2**.

Specificity: It was observed that other phytochemical constituents present in Sanshamani

vati & Mahalaxmivilas rasa did not interfere with the peaks of Berberine and Myristicin, respectively.

Thus the proposed method was proved to be specific. The spectra of standard Berberine and Myristicin corresponded with Sanshamani vati & Mahalaxmi vilas rasa are shown in **Fig. 4A & 4B**.

FIG. 4(A): CHROMATOGRAM AND SPECTRAL DISPLAY OF BERBERINE AT 366NM IN SANSHAMANI VATI

FIG. 4(B): CHROMATOGRAM AND SPECTRAL DISPLAY OF MYRISTICIN AT 212 NM IN MAHALAXMIVILAS RASA

Linearity: Different concentrations of standards were analyzed to get linearity. Under optimized chromatographic conditions peak areas for the corresponding standard were found proportional to the concentrations of Berberine and Myristicin Fig. 6. The statistical parameters of the linearity such as range, correlation coefficient, slope, intercept, SD of the intercept were presented in **Table 5**. The linearity graphs are presented in **Fig. 6**. The limit of detection (LOD) estimated for Myristicin was 21.95 pg/spot and limit of quantification (LOQ) 66.51 pg/spot. Similarly, the limit of detection (LOD) estimated for Berberine was 910.03 pg/spot and limit of quantification (LOQ) 2757.65 pg/spot.

TABLE V. DIVEANTTTTANAMETERS OF BENDENN'E & MITNISTICHY						
Product Name	Sanshamani Vati	mahalaxmivilas rasa				
Marker compound	Berberine	Myristicin				
Linearity range (ng/spot)	2450-9800 pg	98 pg - 686 pg				
Correlation coefficient ®	0.9994	0.9999				
Slope	0.34	5.34				
Intercept	234.60	237.76				
LOD	910.03 pg/spot	21.95 pg/spot				
LOQ	2757.65 pg/spot	66.51 pg/spot				

FIG. 6: LINEARITY GRAPHS OF BERBERINE & MYRISTICIN

International Journal of Pharmaceutical Sciences and Research

Intermediate Precision (Reproducibility): Precision of the method was evaluated for interday analysis. For precision % RSD was found to be <5% for Berberine & Myristicin Table 7A.

TABLE 7(A): INTERDAY PRECISION BY HPTLC

Sanshamani Vati		Sample 1 Sample 2		Sample 3					
Levels	Day 1	Day 2	Day 3	Day 1	Day 2	Day 3	Day 1	Day 2	Day 3
Berberine - Peak area (pg/4ul)	2430	2410	2340	2470	2400	2380	2360	2330	2430
% RSD		1.97			1.96			2.16	
Mahalaxmivilas rasa		Sample 1			Sample 2			Sample 3	
Levels	Day 1	Day 2	Day 3	Day 1	Day 2	Day 3	Day 1	Day 2	Day 3
Muristicin (ng/15ul)	158.35	150.21	160.08	164.76	170.59	164.27	165.63	173.29	161.88
Myristicin - (pg/15ul)	150.55	150.21	100.00						

Robustness: The robustness of the methods was different analyst. % RSD was estimated to be < determined by analysis of same sample with 5.00 Table 7B.

TABLE 7(B): DIFFERENT ANALYST PRECISION BY HPTLC

Sanshamani Vati	Sample 1			Sample 2			Sample 3		
Levels	Apolyst 1	Analyst 2	Analyst	Analyst	Analyst	Analyst	Analyst	Analyst	Analyst
Levels	Analyst 1	Allaryst 2	3	1	2	3	1	2	3
Berberine - Peak area	2720	2770	2840	2370	2300	2280	2330	2420	2400
(pg/4ul)	2720	2770	2840	2570	2300	2280	2550	2420	2400
% RSD		2.17			2.04			1.98	
Mahalaxmivilas rasa		Sample 1		Sample 2			Sample 3		
Levels	Analyst 1	Analyst 2	Analyst	Analyst	Analyst	Analyst	Analyst	Analyst	Analyst
Levels	Analyst	Allaryst 2	3	1	2	3	1	2	3
Myristicin - (pg/15ul)	196.74	193.58	189.46	170.59	174.31	173.29	172.65	169.94	178.19
% RSD		1.89			1.11			2.42	

Method Precision (Repeatability): 10 Samples with same concentration were quantified under

same experimental conditions and % RSD was <5.00 **Table 8**.

TABLE 8: REPEATABILITY BY HPTLC

Analyte	Amount of Sample (n = 10)	Amount of drug detected (n = 10)	RSD (%)
Berberine in Sanshamani Vati	2.8669 g	2331 pg/4 ul	4.90
Myristicin in Mahalaxmivilas rasa	1.6377 g	162.36 pg/15 ul	1.92

Accuracy: By adding known amount of standard analyte in the sample % recovery was measured which was found to be in range from 90 to 110 %
 Table 9. % RSD for all parameters were below 5%

for Berberine in Sanshamani Vati and Myristicin in Mahalaxmivilas rasa, which shows the proposed methods have high level of precision.

TABLE 9: A	CCURACY STUDIE	S OF BERBERINE	& MYRISTICIN BY	HPTLC
Analyte	Amount of drug	Amount of drug	Theoretical	A mount o

Analyte	Amount of drug	Amount of drug	Theoretical	Amount of drug found	%
	Analyzed (pg)	added (pg)	concentration (pg)	(pg)	Recovery
Berberine	382	305	687	638.33	92.92
	382	392	774	699.33	90.35
	382	457	839	755.33	90.03
Myristicin	9.03	7.19	16.22	15.46	95.31
	9.03	9.03	18.06	17.67	97.82
	9.03	10.78	19.81	18.95	95.66

Method Validation by ICP-OES: The Method validation for Quantification of Elemental Analysis (Au, Fe, Hg & Cu) in Mahalaxmi vilas Rasa by

ICP-OES was performed as per standard ICH guidelines, which included linearity, precision, accuracy, LOD and LOQ.

Linearity: Different concentrations of samples were analyzed to get linearity for elemental assay methods under optimized conditions. The statistical analysis of the linearity graph such as linearity range, correlation coefficient, slope, intercept was presented in Table 10.

TABLE 10: LINEARITY PARAMETERS OF ELEMENTAL ASSAY BY ICP-OES								
Product Name		mahalaxmivila	as rasa					
Elemental Assay	Gold (Au)	Iron (Fe)	Mercury (Hg)	Copper (Cu)				
Linearity range	50 - 250 mg	50 - 250 mg	50 - 250 mg	50 – 250 mg				
Correlation coefficient ®	0.9998	0.9999	0.9991	0.9991				
Slope	0.0121	0.0183	0.0136	0.0088				
Intercept	0.076	0.007	0.05	-0.118				
LOD	4.5 ppb	4.8 ppb	0.34 ppm	7.8 ppb				
LOQ	15.0 ppb	16.0 ppb	1.14 ppm	26.0 ppb				

The linearity graphs are presented in Fig. 7.

Intermediate Precision (Reproducibility): Precision of the Elemental assay methods were evaluated for intraday and interday analysis.

precision For intraday and Interday data summarized in Table 11 and% RSD was found to be < 2.00.

Elemental assay in		Gold (Au)		Iron (Fe)		Mercury (Hg)		Copper (Cu)	
Mahalaxn	nivilas Rasa	% Conc.	% RSD	% Conc.	% RSD	% Conc.	% RSD	% Conc.	% RSD
Sample 1	Session 1	0.91	1.28	1.89	0.31	1.42	1.07	0.47	1.24
	Session 2	0.91		1.88		1.41		0.47	
	Session 3	0.89		1.88		1.44		0.46	
Sample 2	Session 1	0.93	1.67	1.88	0.53	1.44	0.81	0.47	1.25
	Session 2	0.92		1.89		1.42		0.46	
	Session 3	0.90		1.90		1.44		0.46	
Sample 3	Session 1	0.91	1.26	1.92	0.30	1.42	0.41	0.46	1.24
	Session 2	0.93		1.92		1.42		0.47	
	Session 3	0.91		1.91		1.41		0.47	

Elemental assay in		Gold	(Au)	Iron	(Fe)	Mercu	ry (Hg)	Соррен	r (Cu)
Mahalaxmiv	vilas Rasa	% Conc.	% RSD	% Conc.	% RSD	% Conc.	% RSD	% Conc.	% RSD
Sample 1	Day 1	0.91	0.63	1.89	0.53	1.42	0.41	0.46	1.25
	Day 2	0.92		1.87		1.42		0.47	
	Day 3	0.92		1.88		1.43		0.46	
Sample 2	Day 1	0.93	0.62	1.86	0.54	1.43	0.40	0.45	1.26
	Day 2	0.94		1.87		1.44		0.46	
	Day 3	0.93		1.85		1.43		0.46	
Sample 3	Day 1	0.90	1.27	1.84	1.12	1.43	0.40	0.45	1.27
	Day 2	0.92		1.88		1.42		0.45	
	Day 3	0.90		1.87		1.43		0.46	

TABLE 11(B): INTERDAY PRECISION OF ELEMENTAL ASSAY BY ICP-OES

Robustness: The robustness of the methods was determine by analysis of same sample with

different analyst. % RSD was estimated to be < 2.00 Table 11(C).

TABLE 11(C): DIFFERENT ANALYST PRECISION OF ELEMENTAL ASSAY BY ICP-OES

Elemental assay in		Gold (Au)		Iron (Fe)		Mercury (Hg)		Copper (Cu)	
Mahalaxm	ivilas Rasa	% Conc.	% RSD	% Conc.	% RSD	% Conc.	% RSD	% Conc.	% RSD
Sample 1	Analyst 1	0.93	1.88	1.88	0.53	1.43	0.40	0.46	1.27
	Analyst 2	0.90		1.86		1.44		0.45	
	Analyst 3	0.93		1.87		1.44		0.45	
Sample 2	Analyst 1	0.91	1.88	1.86	0.31	1.44	1.62	0.45	1.29
	Analyst 2	0.91		1.86		1.44		0.44	
	Analyst 3	0.94		1.87		1.40		0.45	
Sample 3	Analyst 1	0.92	1.09	1.86	0.53	1.44	1.07	0.46	1.26
	Analyst 2	0.91		1.87		1.43		0.46	
	Analyst 3	0.93		1.88		1.41		0.45	

Method Precision (Repeatability): 10 Samples with same concentration were quantified under

same experimental conditions and % RSD was found to be < 2.00 Table 12.

Sample	Elemental assay	Amount of Sample	Concentration of Element	RSD (%)
		(mg) (n = 10)	(% w/w) (n = 10)	
Mahalaxmivilas rasa	Gold (Au)	100	0.91	1.75
	Iron (Fe)	100	1.89	0.94
	Mercury (Hg)	100	1.43	1.66
	Copper (Cu)	100	0.47	1.76

Accuracy: By adding a known amount of standard analyte in the sample % recovery was measured,

which was found to be in the range from 92 to 105 % **Table 13**.

TABLE 13: <i>A</i>	ACCURA	CY STUDIES OF	'ELEMENTAL	ASSAY BY ICP-OES

Elemental assay	Amount of drug Analyzed	Amount of drug added	Theoretical concentration (% w/w)	Amount of drug found	% Recovery
ussuj	(% w/w)	(% w/w)	(,,,,,,)	(% w/w)	
Gold (Au)	0.92	0.63	1.55	1.44	92.63
	0.92	1.00	1.92	1.86	97.10
	0.92	1.40	2.32	2.15	92.64
Iron (Fe)	1.87	2.00	3.87	3.81	98.54
	1.87	3.50	5.37	5.26	97.89
	1.87	4.97	6.84	6.68	97.61
Mercury (Hg)	1.40	2.00	3.40	3.26	96.04
	1.40	3.00	4.40	4.60	104.54
	1.40	4.50	5.90	5.98	101.36
Copper (Cu)	0.46	2.06	2.52	2.50	99.13
	0.46	3.85	4.31	4.11	95.52
	0.46	5.49	5.95	5.64	94.79

International Journal of Pharmaceutical Sciences and Research

X-ray Diffraction (XRD): The XRD profile of Mahalaxmivilas rasa (MLVR) confirms absence of free Mercury (Hg) and Arsenic (As) when compared with XRD spectras of Mercury (Hg) and Arsenic (As) in standard database ICDD PDF-2 2021 (International Center for Diffraction Data).

FIG. 8: XRD SPECTRA COMPARISON SHOWING THE ABSENCE OF Hg & As IN MLVR

CONCLUSION: To maintain the enormous trust in Ayurveda, it's necessary to ascertain the quality, efficacy & safety of Ayurvedic preparations on scientific lines using modern techniques. Present work attempts have been made to characterize and validate the formulations with modern techniques **High-Performance** Thin such as Laver (HPTLC) Chromatography and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The present work will be helpful to understand therapeutic value with respect to the quality parameters of the formulations.

ACKNOWLEDGMENT: We thank our Shree Dhootapapeshwar Limited research team, Ms. Shruti Jadhav and Ms. Vanita Singhvi for their dedicated analytical skill and contribution to the project.

CONFLICTS OF INTEREST: There are no conflicts to declare.

REFERENCES:

- 1. Kanika Khanna: Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle. Phytomedicine. 2020.https://doi.org/10.1016/j.phymed.2020.153361
- Ravishankar B and Shukla VJ: Indian systems of medicine: a brief profile. Afr J Tradit Complement Altern Med 2007; 4(3): 319–337.
- 3. Hamilton, A.C. Medicinal plants, conservation and livelihoods. Biodiver. Conserv 2004; 13(8): 1477–1517.
- 4. Ministry of AYUSH, Govt of India. Guidelines for Ayurveda practitioners for COVID 19. https://www.ayush.gov.in/ayush-guidelines.html.
- Ministry of AYUSH, Government of India, 2020. Ayurveda's Immunity Boosting Measures for Self-care during COVID 19 Crisis.

- Chakraborty Shubhrajyoti: Immunomodulatory Herbs in Ayurveda and COVID 19: A review article. A journal of Ayurveda and Integrated Medical sciences, 2020. ISSN 2456-3110
- Agarwal S and Singh VK: Immunomodulators: a review of studies on Indian medicinal plants and synthetic peptides. Part I: medicinal plants Proc Indian Natl Sci Acad 1999; 65: 179-204.
- Rajeshwari Singh & Sumeet Goel & Pascale Bourgeade & Lotfi Aleya & Devesh Tewari: Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. Environmental Science and Pollution Research 2021; 28: 55925–55951.
- 9. Patwardhan B & Gautam M: Botanical immunodrugs: scope and opportunities REVIEWS 2005; 10.
- Rajeshwari Singh, Sumeet Goel, Pascale Bourgeade, Lotfi Aleya & Devesh Tewari. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. Environmental Science and Pollution Research 2021; 28: 55925–55951.
- Balkrishna A, Pokhrel S, Singh J & Varshney A: Withanone from Withania somnifera May Inhibit Novel Coronavirus (COVID-19) Entry by Disrupting Interactions between Viral S-Protein Receptor Binding Domain and Host ACE2 Receptor. Virol J 2020; doi:10.21203/RS.3.RS-17806/V1
- Niraj S and Varsha S: A review on scope of immunomodulatory drugs in Ayurveda for prevention and treatment of Covid-19. Plant Science Today 2020; 7(3): 417–423. https://doi.org/10.14719/pst.2020.7.3.831
- 13. Ghosh S & Saha S: *Tinospora cordifolia*: One plant, many roles. Anc Sci Life 2012; 31(4): 151–159.
- Patwardhan B, Chavan-gautam P, Gautam M, Tillu G & Chopra A: Ayurveda rasayana in prophylaxis of COVID-19. Current Science 2020; 25(118): 8.
- 15. Bhava Mishra: Varanasi: Chaukhambha Bharti Academy; Bhava Prakasha Nighantu, Part-1, Guduchyadi Varga, Commentary by Chunekar KC 2008; 228.
- 16. Amrit Godbole: The effect of *T. cordifolia* and *Z. officinale* in the Treatment of Rheumatoid Arthritis. International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) 2019; 9(4): 1-9.
- 17. Tiwari P, Nayak P, Prusty SK and Sahu PK: Phytochemistry and Pharmacology of *Tinospora*

cordifolia: A Review. Free Radicals and Antioxidants 2018; 9(1): 70-8.

- 18. Dissanayake KGC, Perera WPRT and Premasinghe N: Immunomodulatory efficiency of *Tinospora cordifolia* against viral infections. World Journal of Pharmaceutical and Medical Research 2020; 6(5): 22-28.
- Vidya H R, Manasa R, Santosha D U, Shivananjappa M and Shekhara Naik R: Immunomodulatory activity of *Tinospora cordifolia*. IP J Nutr Metab Health Sci 2022; 5(3): 103-108.
- Sajith KS and Hafiz Farhan: Pharmacological effects of *Tinospora cordifolia*: (Giloy) in human body. The Pharma Innovation Journal 2022; 11(7): 07-10.
- Bindurani LGP. Ram, Anoop Singh, Komal J Gade and Sachin A Fegade: Antidiabetic Potential of Tinospora cordifolia (Guduchi) and *Momordica charantia* (Karela) in Alloxan Induced Rats. International Journal of Pharmacy and Biological Sciences-IJPBSTM 2019; 9(3): 411-414. DOI: https://doi.org/10.21276/ijpbs.2019.9.3.53
- The Ayurvedic Pharmacopoeia of India. Part I. 1st ed. Vol. 1. New Delhi: Department of AYUSH, Ministry of Health and FW 2001; 53–5.
- Dhama K, Sachan S and Khandia R: Medicinal and Beneficial Health Applications of *Tinospora cordifolia* (Guduchi): A Miraculous Herb Countering Various Diseases/Disorders and its Immunomodulatory Effects. Recent Pat Endocr Metab Immune Drug Discov. 2017; 10(2): 96-111. doi:10.2174/1872214811666170301105101
- 24. Sarvepalli Radhakrishnan Rajasthan Ayurved University. Samta Ayurveda Prakoshtha, India. ClinicalTrials.gov Identifier: NCT04480398. Efficacy and Safety of Guduchi Ghan Vati for Covid-19 Asymptomatic Patients. 2020. https://clinicaltrials.gov/ct2/show/NCT04480398
- 25. Sumanlata, Suman A and Sharma RK: Evaluation of antiinflammatory and antipyretic effect of aqueous extract of *Tinospora cordifolia* in rats. International Journal of Research and Review 2019; 6(8): 340-346.
- Ambrish Kumar Srivastava, Abhishek Kumar and Neeraj Misra: On the Inhibition of COVID-19 Protease by Indian Herbal Plants: An In Silico Investigation. 2020. arXiv: 2004; 03411 [q-bio.OT]. https://doi.org/10.48550/arXiv.2004.03411
- Papia Chowdhury: *In-silico* investigation of phytoconstituents from Indian medicinal herb 'Tinospora cordifolia (giloy)' against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Journal of Biomolecular Structure and Dynamics 2021; 39(17): 6792-6809, DOI: 10.1080/07391102.2020.1803968

- Anjana J, Seema Pradeep, Shiva Manjunatha MP, Anjali Asok and Akshatha M Bhat: A Comparitive Evaluation of Species of Guduchi (Tinospora Cordifolia (Wilid.) Meirs Ex Hook. F & Thoms., Tinospora Malabarica Meirs Ex Hook, Tinospora Crispa Meirs.) w.r.t Satwa. Ayushdhara 2018; 5(3): 1682-1687.
- Wei-Te Huang, Ching-Yeh Tu, Fen-Yu Wang and Sheng-Teng Huang: Literature review of liver injury induced by Tinospora crispa associated with two cases of acute fulminant hepatitis. Complement Ther Med 2019; 42: 286-291. doi: 10.1016/j.ctim.2018.11.028. Epub 2018 Dec 6.
- Srikanth N: Chemical characterization of an Ayurvedic herbo-mineral preparation- Mahalaxmivilas Rasa. Journal of Ayurveda and Integrative Medicine 10, 2019, 262-268.
- Sharma S. Hindi commentary by Pt. Kashinath Shastri on Rasatarangini; Taranga 10, verse 21-22. 11th ed. Varanasi: Motilal Banarasidas Publications 1979; 225-6.
- 32. Mitra S, Arka Jyoti Chakraborty and Abu Montakim Tareq: Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University Science 2022; 34: 101865.
- Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR and Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium and Arsenic. Front. Pharmacol 2021; 12: 643972. doi: 10.3389/fphar.2021.643972
- 34. WHO. Mercury and Health. 31 March 2017. https://www.who.int/news-room/fact-sheets/detail/mercury-and-health
- 35. International Conference on Harmonization, ICH Q2 (R1): Validation of Analytical Procedures: Text and Methodology, ICHSecretariat, Geneva, 2005.
- 36. The Ayurvedic Pharmacopoeia of India, Part-II, Volume-III, First Edition 2010 (Formulations), Ministry of Health and Family Welfare Government of India, Department of Ayurveda, Yoga – Naturopathy, Unani, Siddha & Homeopathy (AYUSH).
- 37. Prakash Itankar, Dhanashri B. Nagulwar and Balaji Bhatlawande: Physical, Phytochemical and Chromatographic Evaluation of Triphala Guggul Tablets. International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) 2015; 4 (6): 306-309. ISSN 2249-6084
- Thakur KS: Quality Standardization of a traditional Ayurvedic formulation Panchamrut Loha Guggul Tablet. Int J Res Ayurveda Pharm 2017; 8(4): DOI: 10.7897/2277-4343.084213

How to cite this article:

Patil P, Gawhankar M, Bidve S and Yadav S: Quality standardization of an ayurvedic formulations - *Sanshamani vati* and *Mahalaxmivilas rasa*. Int J Pharm Sci & Res 2023; 14(6): 3084-95. doi: 10.13040/IJPSR.0975-8232.14(6).3084-95.

All © 2023 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)