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ABSTRACT 

Lipid peroxidation (LPO) in cellular membranes is associated with changes in 
physicochemical properties and impairment of protein functions located in 
membrane environment. Recent studies shows involvement of LPO in 
biological signaling and various diseases. Lipids are oxidized by three distinct 
mechanisms: enzymatic oxidation; non-enzymatic, free radical-mediated 
oxidation and non-enzymatic, non radical oxidation. Lipids containing 
polyunsaturated fatty acids are susceptible to free radical-initiated oxidation 
and can participate in chain reactions that increase damage to biomolecules. 
Polyunsaturated fatty acids (PUFAs) and their metabolites have variety of 
physiological roles including: energy provision, membrane structure, cell 
signaling and regulation of gene expression.  The present manuscript reviews 
concept of LPO with emphasis on implication in various diseases. 

INTRODUCTION: Lipids are heterogeneous groups of 
compound having significant role in various functions 
of body 1, when molecular oxygen reacts with 
unsaturated lipids catalysed by free radicals (non-
enzymatic LPO) or enzymes (enzymatic LPO) 2, 3, 4 
turning them rancid due to oxidative deterioration 
without releasing energy 1, 5 known as lipid 
peroxidation leads to cell damage by disturbance of 
fine structures, alteration of integrity, fluidity and 
functional loss of biomembranes and modifies low 
density lipoprotein (LDL) to proatherogenic and 
proinflammatory mediated potentially toxic products 6. 

LPO consists of three stages: initiation, propagation 
and termination 7 proceeded by three distinct 
methods: free radical-mediated oxidation; free radical-
independent, nonenzymatic oxidation and enzymatic 
oxidation 8 leads to damaging the biomolecules such as 
nucleic acids, proteins, structural carbohydrates and 
lipids The initiation phase of lipid peroxidation includes 
hydrogen atom abstraction by several radical species 

such as hydroxyl (•OH), alkoxyl (RO•), peroxyl (ROO•) 
and possibly HO2• 9. Polyunsaturated fatty acids 
(PUFA) in membrane lipids are susceptible to 
peroxidation because of abstraction of hydrogen atom 
from a methylene (–CH2–) group containing only one 
electron.  

Moreover, double bond weakens the C–H bonds on 
the nearby carbon atom facilitating the H• subtraction. 
The initial reaction of •OH with polyunsaturated fatty 
acids produces a lipid radical (L•), which in turn reacts 
with molecular oxygen to form a lipid peroxyl radical 
(LOO•). The LOO• can abstract hydrogen from an 
adjacent fatty acid to produce a lipid hydroperoxide 
(LOOH) and a second lipid radical 10. Further, reducing 
agents, such as Fe2+, causes reductive cleavage of 
LOOH producing lipid alkoxyl radical (LO•). The chain 
reaction of lipid peroxidation stimulated by both 
alkoxyl and peroxyl radicals by abstracting additional 
hydrogen atoms 11. Further mitochondrial injury can 
also results in generation of ROS induced by lipid 
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peroxidation 12. Lipid hydroperoxide (LOOH) can 
frequently breakdown into reactive aldehyde products, 
including malondialdehyde (MDA), 4-hydroxy-2-
nonenal (HNE), 4-hydroxy-2-hexenal (4-HHE) and 
acrolein, in the presence of reduced metals or 
ascorbate 12, 13, 14, 15, 16. 

Characteristic of lipid peroxidation is the breakdown of 
polyunsaturated fatty acids to yield smaller fragments, 
such as aldehydes, classified into three families, on the 
basis of their structural features: 2-alkenals, 4-hydroxy-
2- alkenals and ketoaldehydes 17. Free radical mediated 
injury to brain leads to lipid peroxidation, where it 
directly damages membranes and generates a number 
of oxidized products. Some of these chemically and 
metabolically stable oxidised products can be useful as 
in vivo biomarkers in lipid peroxidation such as 
isoprostanes (IsoPs) and isofurans (IsoFs), derived from 
arachidonic acid C20:4n-6 and neuroprostanes 
(NeuroPs), derived from docosahexaenoic acid C22:6n-
3 18. 

Methods of Lipid Peroxidation: 

Free Radical-Mediated LPO: The chain mechanism, 
that is, one initiating free radical can oxidize many 
molecules of lipids was involved in the free radical-
mediated LPO 19. Porter and his colleagues studied 
extensively the mechanism involved in free radical-
mediated LPO and major reaction includes (1) 
abstraction of bisallylic hydrogen from 
polyunsaturated fatty acids to give carbon-centred 
radicals which rearranges to more stable cis, trans-
pentadienyl radicals, (2) addition of oxygen to the 
pentadienyl radical to give lipid peroxyl radicals, (3) 
release of oxygen from the peroxyl radical to give 
oxygen and pentadienyl radicals, which rapidly react 
with oxygen to give a thermochemically more stable 
trans, trans form preferentially than cis, trans form and 
(4) intramolecular addition of the peroxyl radical to the 
double bond to yield bicyclic prostaglandin-type 
products 20, 21. 

Nonradical, Nonenzymatic LPO: Ozone and singlet 
oxygen oxidize lipids by nonradical mechanisms 22. 
Singlet oxygen oxidizes unsaturated lipids with 
concomitant double bond migration mainly by ene-
reaction to give hydroperoxide, with minor side 
reactions such as 1, 4-addition to give 1, 4-

endoperoxide and 1, 2-addition to give dioxetane, 
which readily decomposes to yield carbonyl 
compounds accompanying chemiluminescence. 
Myeloperoxidase (MPO) is a heme protein secreted by 
activated phagocytes which reacts with hydrogen 
peroxide to give hypochlorous acid and hypobromous 
acid, HOCl and HOBr, respectively, in the presence of 
chloride and bromide oxidize biological molecules by 
several mechanisms including both free radical and 
nonradical pathways 23, 24, 25. 

Enzymatic LPO: Lipoxygenase (LOX) and 
cyclooxygenase (COX) have to be known to oxidise 
arachidonic acid to hydroperoxyeicosatetraenoic acid 
(HPETE), prostaglandins, prostacyclin, thromboxane 
and leukotrienes. COX and LOX oxidize lipids regio-, 
stereo- and enantio-specifically 26. Cytochrome P-450 
(CYP) was also known to oxidize arachidonic acid to 
give hydroxyeicosatetraenoic acid (HETE), 
epoxyeicosatrienoic acid and dihydroxyeicosa- 
tetraenoic acid 27. 

Role of Lipid Peroxidation in various diseases:  

Cardiovascular diseases: 

Atherosclerosis: Atherosclerosis is characterized by the 
accumulation of lipids and fibrous connective tissues in 
the vascular wall which encompasses a complex 
interaction between inflammatory cells, vascular 
elements, and lipoproteins [28]. Oxidation of LDL 
contributes to cell debris core and formation of 
different products such as lipid hydroperoxides, 
aldehydes like 4-hydroxynonenal (HNE), oxysterols and 
lysophosphatidilcholine 29, 30, 31 by modifying lipo- 
proteins and can cause cardiac cell damage by 
impairing metabolic enzymes 32. LDL binds to the HNE 
covalently and this modification activates 
macrophages which may contribute to the vascular 
inflammation leads to atherosclerotic lesions and 
cytotoxicity 33. 

Myocardial Infarction (MI): Myocardial infarction (MI) 
or acute myocardial infarction (AMI), commonly known 
as a heart attack, is interruption of blood supply to a 
part of the heart, causing heart cells to die due to 
occlusion of a coronary artery followed by rupturing of 
a vulnerable atherosclerotic plaque, which is an 
unstable collection of lipids (fatty acids) and white 
blood cells (especially macrophages) in the wall of an 
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artery 34. The extent of damage and death of cardiac 
myocytes is directly related to consequent morbidity 
and mortality 35. HNE may also be responsible for 
damage to cardiac myocytes that occurs in myocardial 
infarction by accumulating in myocardial cells during 
reperfusion injury 36, causing dysfunction and death of 
cardiac myocytes by a mechanism involving disruption 
of the actin cytoskeleton and dysregulation of cellular 
calcium homeostasis 37. HNE may promote cardiac 
arrhythmia by inhibiting potassium channels resulting 
in membrane depolarization and action potential 
prolongation 38 and cardiac hypertrophy by inhibiting 
mitochondrial energy-regulating enzyme NADP+-
isocitrate dehydrogenase 39. 

Stroke: A stroke, also known as a cerebrovascular 
accident (CVA), is loss of brain function(s) due to 
disturbance in the blood supply to brain due to 
ischemia (lack of blood flow) caused by blockage 
(thrombosis, arterial embolism), or haemorrhage 
(leakage of blood) 40. Metabolic syndrome (MS) and 
obesity greatly increases risk for a stroke, which is 
major cause of morbidity and mortality. For coronary 
artery atherosclerosis, HNE likely plays roles in the 
atherosclerotic process in the cerebral blood vessels 
that are occluded by a clot or rupture during a stroke.  

Increased levels of lipid peroxidation/HNE associated 
with neurons and inflammatory glial cells 41, cause 
dysfunction and degeneration of neurons by modifying 
membrane-associated glucose and glutamate 
transporters, ion-motive ATPases, enzymes involved in 
amyloid metabolism and cytoskeletal proteins 32. 
Levels of HNE are increased in hippocampal neurons 
prior to their degeneration after transient global 
forebrain ischemia in a gerbil model of cardiac arrest 
42. Exercise and dietary energy restriction reduce HNE 
production and may also increase cellular systems for 
HNE detoxification including glutathione and 
oxidoreductases 32. 

Systemic Lupus Erythematosus: Systemic lupus 
erythematosus (SLE) is a debilitating autoimmune 
disease with arthritis, rash, vasculitis, involvement of 
central nervous system (CNS) and renal and 
cardiopulmonary systems 43 characterized by the 
presence of autoantibodies to self-antigens. Increased 
oxidative damage, mediated by free radicals, is directly 
result of a change in delicate balance oxidants and 

antioxidants and an imbalance in pro- and anti-
inflammatory molecules, with elevated levels of 
malondialdehyde, conjugated dienes 4-HNE and 
decreased levels of antioxidant enzymes (extracellular 
SOD, catalase and glutathione peroxidise) 44. 
Suryaprabha et al. reported the elevated levels of 
superoxide and hydrogen peroxide production by 
peripheral leucocytes in SLE patients without any 
elevated levels of malodialdehyde levels measured by 
thiobarbituric acid assay 45.  

Erythrocyte dysfunction and Aging: Erythrocyte aging 
is senescence of red blood cells, lacking organelle for 
protein synthesis and mature erythrocyte is incapable 
of self-repair, reproduction and carrying out functions 
performed by other cells 46. Lipid peroxidation 
represents a significant source of erythrocyte 
dysfunction and aging 47. The lipid derived aldehydes 
like 4-hydroxy-trans-2-nonenal (HNE), abundant and 
toxic, are metastable and diffuse from their site of 
origin to propagate oxidative injury by acting as “toxic 
second messengers”.  

The electrophilic nature of α, β unsaturation in HNE 
renders it highly reactive with cellular nucleophiles 
such as glutathione, cysteine, lysine and histidine of 
proteins and with nucleic acids 12, 48, 49. High 
concentrations of HNE are cytotoxic, whereas lower 
concentrations of HNE modulate cell proliferation and 
gene expression, inhibit the synthesis of nucleic acids 
and proteins, stimulate neutrophil chemotaxis and 
modulate platelet aggregation 12. Erythrocytes are 
potential targets of lipid peroxidation products 50 like 
HNE which accumulate in the erythrocytes 51 and cause 
covalent modification of the intrinsic proteins 52 and 
red cell lyses 1. 

Behҫet’s Disease: Behҫet’s disease (BD) is a chronic 
multisystemic disorder which is characterized by a 
relapsing systemic inflammatory process, particularly 
affecting the vascular bed. Various reports showed 
that various functions of polymorphonuclear (PMN) 
leukocytes in peripheral blood, such as chemotaxis, 
phagocytosis and superoxide radical anion (O2

-) 

generation are increased in Behҫet’s disease 53, 54, 
affecting skin, mucous membranes, eyes, joints, 
central nervous system and blood vessels 55, 56. 
Different factors involved in the pathogenesis of this 
disorder includes genetic factors, viral infections, 
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allergies to bacteria and several immunologic 
abnormalities 57 and increased levels of oxygen free 
radicals plays role in tissue damage in BD 58, 59, 60. 
Oxygen free radicals can lead to lipid peroxidation 
reactions as a result of which malondialdehyde (MDA) 
is produced 60, 61. 

Neurodegenerative Disorders: 
Amyotrophic Lateral Sclerosis (ALS): Amyotrophic 
lateral sclerosis (ALS) is a progressive 
neurodegenerative disorder that affects both upper 
and lower motor neurons 62. Reactive intermediates 
such as 4-hydroxy-2-nonenal-histidine (HNEH), 
crotonaldehyde-lysine (CRAL), N -(carboxymethyl) 
lysine (CML), pentosidine, Ne -(carboxyethyl)lysine 
(CEL), argpyrimidine, pyrraline and imidazolone 12 
modify proteins to form advanced glycation and 
products (AGEs) or advanced lipoxidation end products 
(ALEs) 63. Lipid peroxidation and protein glycoxidation 
are enhanced in the spinal cord motor neurons and 
glial cells and formation of intermediates in these 
abnormal reactions is implicated in motor neuron 
degeneration 64. 

Alzheimer’s disease: Alzheimer’s disease is 
characterized by the degeneration of neurons in brain 
regions involved in cognition (hippocampus, entorhinal 
cortex, frontal cortex and associated structures) and 
emotional behaviors (amygdala, prefrontal cortex, 
hypothalamus and others). The abnormal production 
and aggregation of amyloid β-peptide (Aβ) is believed 
to be a pivotal event in the disease process 65. Elevated 
levels of HNE in association with Aβ plaques and 
neurofibrillary tangles (degenerating neurons with 
intracellular aggregates of the microtubule-associated 
protein tau) 66, 67, 68 in the cerebrospinal fluid, is 
considered as potential biomarker of this disease 69.  

Exposure of Aβ to cultured neurons results in lipid 
peroxidation and HNE production which impairs the 
function of membrane ion-motive ATPases and 
glutamate and glucose transporters which renders 
neurons vulnerable to excitotoxicity and apoptosis 70, 

71, 72, 73. Inflammatory processes involving activation of 
Toll-like receptors (part of the innate immune system) 
may mediate the death of neurons downstream of Aβ 
and HNE 74.  

Parkinson’s disease: Parkinson’s disease (PD) is 
characterized by selective degeneration of 
dopaminergic neurons of the substantia nigra, 
resulting in bradykinesis, tremor and rigidity. Free-
radical generation and lipid peroxidation causes 
oxidative stress by activation of phosholipase in 
substantia nigra, plays important role in the 
pathogenesis of this disease, supported by the fact 
that cPLA2 null mice are resistant to 1-methly-4-
phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced 
nephrotoxicity.  

The MPP+ metabolite of MPTP is taken up by the 
nigrostriatal neurons causing neuronal death by 
inhibiting mitochondrial oxidative phosphorylation [75]. 
In PD, excessive reactive oxygen species (ROS) results 
from accelerated metabolism of dopamine by 
monoamine-oxidase-B.  

Marked increase in 8-hydroxy-2’-deoxyguanosine (a 
hydroxyl radical-damaged guanine nucleotide 
commonly used to evaluate oxidative damage to DNA) 
and significant increase in several markers of lipid 
peroxidation in PD brain regions were found 76. 

Obsessive-Compulsive Disorder: Obsessive-compulsive 
disorder (OCD) is a common, disabling disorder 
characterised by obsessions and/or compulsions that 
are egodystonic 77.  

The fronto-striato-pallidothalamo-loop circuitry of the 
brain provides a unifying framework for understanding 
processes that control cognition, decision-making, 
planning of complex behavioral strategies and 
neuropsychiatric symptoms and defect in this circuit 
has been suggested by the derangements in cognitive 
functions, emotional state, executive and decision 
making functions in OCD patients 78. Abnormal 
catecholamine metabolism in the brain cells might 
produce increased free radical generation in OCD 
patients 79.  

Chakraborty et al. reported significantly higher mean 
values for serum TBARS in OCD patients than controls 
and a strong positive correlation between the lipid 
peroxidation marker TBARS and the disease severity 
indicator Yale Brown Obsessive Compulsive Scale 
(YBOCS) was found among cases 80. 



                               Gahalain et al., IJPSR, 2011; Vol. 2(11): 2757-2766                                    ISSN: 0975-8232 

                                                                        Available online on www.ijpsr.com                                                                  2761 

Diabetes mellitus: Diabetes Mellitus (DM) is a 
metabolic disorder of multiple aetiology characterized 
by chronic hyperglycaemia with disturbances of 
carbohydrate, fat and protein metabolism resulting 
from defects in insulin secretion, insulin action or both 

81. Diabetes mellitus is a state of increased oxidative 
stress resulting in higher production of reactive oxygen 
species (ROS), such as superoxide radical, hydroxide 
radical, hydrogen peroxide (H2O2) and/or deficiency in 
the antioxidant defence systems 82, 83 which has been 
attributed to protein glycation and/or glucose auto-
oxidation owing to a hyperglycemic environment 84.  

Kesavulu et al., investigated the relationship between 
serum lipids, lipoproteins, lipid peroxides 
[thiobarbituric acid reactive substances (TBARS)] and 
erythrocyte antioxidant enzymes [catalase (CAT), 
glutathione peroxidise (GPx) and superoxide dismutase 
(SOD)] in non-insulin-dependent diabetic patients with 
and without coronary heart disease (CHD), and a 
comparison was made for all the above parameters 
with non-diabetic patients with CHD. Lipid peroxide 
concentrations were significantly increased in diabetic 
patients and non-diabetic patients with CHD compared 
to normal and diabetic patients with CHD had higher 
levels of TBARS, increased total cholesterol and LDL-
cholesterol compared to those diabetics without CHD.  

Among the erythrocyte antioxidant enzymes, CAT 
activity was increased, GPx activity was decreased and 
no change was observed in SOD activity in both groups 
of diabetic patients and non-diabetic patients with 
CHD compared to those in controls [85]. 

Obesity: Obesity promote disease by increasing 
oxidative damage to proteins, lipids and DNA as the 
result of a combination of increased free radical 
production and an impaired ability of cells to detoxify 
the radicals and repair damaged molecules. By 
covalently modifying membrane-associated proteins, 
the membrane lipid peroxidation product 4-
hydroxynonenal (HNE) plays sinister roles in the 
metabolic syndrome and associated disease processes, 
damage pancreatic β cells and impair the ability of 
muscle and liver cells to respond to insulin 32. 
Increased oxidative damage to cellular constituents 
(proteins, lipids and DNA) and increased inflammation 
as indicated by elevated levels of tumor necrosis factor 
(TNF), interleukin-1b and other proinflammatory 

cytokines are two systemic alterations involved in the 
obesity and metabolic syndrome (MS) 86, 87, 88. 
Oxidative stress induces the production of 
inflammatory cytokines and the cytokines in turn 
induce free radical production 89. 

Cancer: 

Hodgkin’s disease: Hodgkin’s disease (Hodgkin’s 
Lymphoma) is a type of lymphoma i.e. cancer 
originating from white blood cells called lymphocytes, 
named after Thomas Hodgkin, who first described 
abnormalities in the lymph system in 1832 90, 91, 
characterized by the orderly spread of disease from 
one lymph node group to another and by the 
development of systemic symptoms with advanced 
disease. Gu¨ ven et al. demonstrated increased 
erythrocyte superoxide dismutase (SOD) activity and 
decreased erythrocyte and plasma Glutathione 
peroxidise (GPX) activities in patients with Hodgkin’s 
disease.  

Superoxide anion radicals converted rapidly to 
hydrogen peroxide by SOD cross cellular membranes 
and interact with superoxide anion radicals to produce 
the hydroxyl radical to react with biological molecule in 
its vicinity and damage proteins, cause DNA strand 
breakage, and initiate lipid peroxidation. Significantly 
higher concentrations of MDA in plasma as well as in 
erythrocytes, higher level of SOD in erythrocyte and 
lower level of GPX in plasma and erythrocyte as 
compared to the control group were also reported 92. 

Skin Cancer: Skin exposure to ultraviolet (UV) radiation 
induces dermal changes such as erythema, skin aging, 
and skin cancer 93. The UVA (320–400 nm) region is a 
major component of sunlight that produces oxidative 
stress by interaction with intracellular chromophores 
93. Reactive oxygen species (ROS) such as singlet 
oxygen and superoxide anion promotes biological 
damage in exposed tissues via iron-catalyzed oxidative 
reactions 94.  

ROS initiate oxidative damage in membrane lipids 
resulting in lipid radicals which propagate peroxidation 
process leading to accumulation of lipid 
hydroperoxides 95, 96. UVA exposure induces the 
synthesis of MMP-1, the interstitial collagenase which 
is responsible for the degradation of dermal collagen 
97, 98, 99, mediated by singlet oxygen 100 and in parts by 
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proinflammatory cytokines interleukin-1 and 6 [101] and 
its increased activity is observed in tumor progression, 
metastasis, and cutaneous photoaging in human skin 
97, 98, 99. Polte and Tyrrell clearly demonstrated a direct 
role of iron in UVA-induced transcriptional activation 
of MMP-1102 where iron leads to formation of specific 
iron (II)/iron (III)/O2 complexes, which have decisive 
role in initiation of lipid peroxidation processes and 
involved in direct reactions with unsaturated fatty 
acids or lipid peroxides, producing peroxyl radicals that 
lead to propagation of lipid peroxidation 103. 

Chronic Liver Diseases: Oxidative stress plays a role in 
the pathogenesis of a certain liver diseases such as 
alcoholic liver disease, metal storage disease and 
ischemia/reperfusion injury and hepatic fibrosis 
Development of fibrosis and cirrhosis are major 
complication of chronic hepatitis B. Lipid peroxidation 
can be detected in situ and commonly occurs in severe 
chronic hepatitis B and related to active necro-
inflammatory change of the liver and contribute to the 
progression of the disease in chronic hepatitis B 104. 

Cholestatic Liver Injury: Cholestatic liver injury is a 
very common feature of chronic liver diseases where 
the accumulation of cytotoxic bile acids plays a pivotal 
role in determining liver necrosis and then in 
sustaining the development of liver fibrosis [105]. The 
mechanism involved in bile acid cytotoxicity includes 
detergent properties 106, alteration of intracellular Ca 
2+ homeostasis 107, ATP depletion and mitochondrial 
damage 108.  

Various studies suggested the involvement of reactive 
oxygen species (ROS) and free radical reactions in the 
pathogenesis of cholestatic liver injury and evidences 
supporting this include : deleterious effect of a high-fat 
diet as well as the detection of lipid peroxidation in 
mitochondria isolated from the liver of bile duct ligated 
rats 109, 110 ,detection of lipid peroxides in erythrocytes 
and in plasma of children affected by chronic 
cholestasis 111, 112, a possible pro-oxidant effect of 
hydrophobic bile acids against isolated hepatocytes 
[113], a decrease in antioxidant defences in the liver of 
bile duct ligated rats 114. 

Alopecia Areata: Alopecia areata (AA) is an 
autoimmune 115, disabling chronic inflammatory 
disorder of the hair and nails 116 whose severity ranges 

from patchy loss of scalp hair to the loss of all scalp 
hair (alopecia totalis; AT) or all scalp and body hair 
(alopecia universalis; AU) 117. AA is characterized by an 
inflammatory cell infiltrate surrounding the hair follicle 
which is associated with damage to hair follicle and 
subsequent change in the normal keratinisation 118.  

Various factors may play role in the pathogenesis of AA 
like cytokines including interleukin I (IL-I) alpha, IL-I 
beta and tumor necrosis alpha (TNF-α) 119 which is 
synthesized and released into the extracellular milieu 
by immune and non immune cells during inflammatory 
processes leading to stimulation of intracellular 
production of mitochondrial ROS 120 initiating an 
increase in the cellular antioxidant defense 
mechanism, i.e. an increase in SOD and GSH-Px activity 
121.  

The levels of TBARS in scalp of patients with AA were 
significantly higher than those of controls; the mean 
levels of TBARS, SOD and GSH-Px in early phase of 
disease were increased 2-fold as compared with late 
phase of the disease and also high SOD and GSH-Px 
activities in the scalp of patient with AA. These high 
levels could not protect the patients against the 
reactive oxygen species, because lipid peroxidation 
could not be lowered in AA patients 115. 

Acute Respiratory Distress Syndrome: Acute and 
chronic organ failures, such as acute respiratory 
distress syndrome (ARDS), liver failure due to cirrhosis, 
heart or kidney failure are caused by inflammatory 
processes. Oxidative metabolites are known as potent 
triggers of inflammatory diseases leading directly to 
severe cell damage, accompanied by impaired 
antioxidative capacities. Lichtenstern et al., reported 
that acute respiratory distress syndrome (ARDS) 
patients showed significantly higher levels in MDA 
concentrations and blood concentrations of hexanal 
and propanal, specific by-products of lipid 
peroxidation, than controls. Malondialdehyde (MDA) is 
the prototype of these indicators and served in a huge 
number of studies for detection of LPO 122. 

Dental Diseases: The role of free radicals (salivary 
MDA) in the dental condition such as oral submucous 
fibrosis, candidasis, dental caries, periodontal disease, 
leukoplakia and oral cancer has been reported [123]. A 
study in a baby hamster kidney cell line and its 
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polyomavirus transformed malignant counterpart, 
reported high level of lipid peroxidation in transformed 
cells and low alpha tocoferol content, suggesting that 
the level of lipid peroxidation is increased in the 
malignant state, in precancerous condition, oral cancer 
and periodontal diseases 124. High level of MDA in 
periodontitis, leukoplakia, oral submucosis and cancer 
were found as compared to controls, indicating a role 
of free radical in pathogensis of precancerous 
condition lesion, cancer and periodontal disease 123.  

CONCLUSION: Membrane phospholipids containing 
polyunsaturated fatty acids are particularly susceptible 
to oxidation and can contribute in chain reactions that 
amplify damage to biomolecules. Lipid peroxidation 
often occurs in response to oxidative stress, and a 
great diversity of phospholipid oxidation products and 
aldehydes is formed when lipid hydroperoxides break 
down in biological systems and these products exert 
cytotoxic and genotoxic effects. In conclusion, the aim 
of this review is to demonstrate process of lipid 
peroxidation occurring in PUFA making toxic 
metabolites, leading to free radical generation, which 
are involved in various diseases. There is a vital need to 
target these toxic metabolites in order to reduce the 
rising burden of diseases caused due to lipid 
peroxidation process. 
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