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ABSTRACT: Antibiotic yield has been raised by numerous pharmaceutical 

firms in response to the rising population, the COVID-19 outbreak, and the 

introduction of several new diseases. Several heavy metals are used in the 

antibiotics' formulation. The release of antibiotics and heavy metal ions has 

wreaked havoc on the ecosystem. The issue with heavy metals is that the 

bulk of them last a long time in the environment and are a leading cause of 

different types of cancer and other human diseases. On the other hand, 

experts worldwide are concerned about the presence of antibiotics in the 

environment, particularly in wastewater, because it leads to the emergence of 

antibiotic-resistant microorganisms (superbugs) that can cause widespread 

damage. Bioremediation is a viable approach for treating pharmaceutical 

industry wastewater with antibiotics and heavy metal ions. Copper, 

cadmium, nickel, zinc, lead and iron are common heavy metal ions found in 

wastewater from antibiotic-producing pharmaceutical firms. Along with it, 

antibiotics like chlortetracycline, oxytetracycline, cefalexin, 

Sulfamethoxazole, norfloxacin and ciprofloxacin are frequently found in the 

effluent of pharmaceutical companies. As a result, this review focuses on the 

characterization and prospective removal capacities of several microbes for 

antibiotics and heavy metal ions from pharmaceutical industry wastewater. 

This review has emphasized the importance of scientific enhancement. 

INTRODUCTION: The products from 

pharmaceutical industries are used for several 

remedial purposes, antibiotics being one of them. 

Around the world, several tonnes of antibiotics are 

produced yearly, and wastewater from such 

industries has marked the presence of antibiotics in 

them. Certain metal ions used to formulate 

antibiotics are also found in the wastewater of such 

industries.   
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Hyderabad, India, has lots of pharmaceutical 

industries. When researchers analyzed the water 

from nearby villages, they detected the presence of 

antibiotics in them, which are also sometimes in 

high concentrations of mg/L. Hence, it can be 

stated that groundwater and surface water are 

getting contaminated with antibiotics and heavy 

metal ions.  

Animals and people or any organism using such 

contaminated waters with antibiotics can form 

develop antibiotic resistance over the due course of 

time. The metals, essential or non- essential are 

proved to be detrimental at concentrations above 

the normal. (Rasmussen et al. 2000) defined metal 

toxicity as an inherent capacity or the potential of 
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certain metal to bring detrimental consequences for 

living organisms 
1
. The ability of the metal ions to 

remain in the atmosphere for long periods of time 

is hazardous to living organisms such as humans, 

animals and plants. For an example, ―the average 

half-life of metal ions such as lead is be around ten 

years once it enters in humans‖ 
2
. Acidic 

environment followed by surrounding having 

nutrient deficiency together contributes to more 

serious metal toxicity 
3
. The epidemic of COVID-

19, caused due to the spread of the SARS-CoV-2 

virus has also resulted in the increase in the 

consumption of numerous antibiotic formulations 

around the world. Antibiotic drugs such as 

ciprofloxacin 
4, 5, 6

, tetracycline based antibiotic 

drugs 
6
, cefalexin 

7
, sulfamethoxazole 

8
, 

norfloxacin 
9
 were all recommended suggested for 

treatment of several bacterial co-infections in 

patients with SARS-CoV-2 infections 
10-15

. 

Therefore, by employing microorganisms, 

bioremediation efficiently removes pharmaceutical 

contaminants such as antibiotics and heavy metal 

ions from the wastewater detected in the 

contaminated areas. However, it is observed that 

some microorganisms can only remove the 

contaminants at very low concentrations, making 

them less efficient. Therefore, more emphasis must 

be given to increasing the efficiency of such 

microorganism in removing antibiotics and the 

heavy metal ions detected. 

Commonly detected metal ions from antibiotic-

producing pharmaceutical industries include Nickel 

(Ni), Copper (Cu), Iron (Fe), Cadmium (Cd), Zinc 

(Zn), Lead (Pb), etc. Table 1. Metal ions used in 

the production of antibiotics are detected in the 

wastewater. Commonly detected antibiotics in the 

effluents include Oxytetracycline, 

Chlortetracycline, Sulfamethoxazole, Cefalexin, 

Norfloxacin, and Ciprofloxacin Table 2. The 

current time considers them contaminants that need 

immediate strict attention since they are released 

into the environment, more precisely into 

wastewater and then into waters, sometimes 

completely untreated. 

Removal of Heavy Metal Ions by 

Microorganisms from Effluent of Antibiotic 

Producing Pharmaceutical Industry: Antibiotics 

are certain medicines that are used to fight against 

bacterial infections. There are several 

pharmaceutical industries producing antibiotic 

drugs. However, many different metal ions used to 

produce these antibiotics are discharged along with 

antibiotics in the wastewater into the environment. 

Such metal ions and the antibiotics in wastewater 

can be treated using different microorganisms in 

different conditions. In a study conducted by 

(Lalung 2014, Amin 2019) 
10, 11

, heavy metal ions 

and antibiotics from the effluents were detected. 

The commonly detected heavy metal ions in the 

effluents of such pharmaceutical industries are 

listed in Table 1. 

Several bacteria, fungi, and algae have absorbed 

metal ions from the antibiotic producing 

pharmaceutical industries. Interactions of metal 

ions with the cell wall of these microorganisms act 

as the first step of the entire biosorption process. 

The specialized cell wall of each category of 

microorganism, be it fungi or algae or bacteria have 

all contributed to the biosorption of the heavy 

metals.  

Bacterial Cell Biology that Aids in Metal Ion 

Uptake: Based on the uptake of gram staining, 

bacteria can be grouped into gram-positive and 

gram-negative strains. The cell wall composition of 

gram-positive differs from gram-negative strains, 

which have affected the heavy metals uptake by 

microorganisms positively or negatively. Gram-

positive bacteria such as Bacillus sp., Micrococcus 

sp., Streptomyces sp. have more peptidoglycan in 

their cell wall (90%) than gram-negative bacteria 

(10%-20%). The negative charges in the cell wall 

are associated with the presence of teichoic acids of 

the gram-positive bacterium. In contrast, in the case 

of gram-negative bacterium such as Pseudomonas 

aeruginosa, Stenotrophomonas maltophilia, 

presence of teichoic acids together in association 

with teichuronic acids and lipopolysaccharides all 

contributed together to the negative charges of the 

cell wall 
2
. Efflux pumps are made of membrane 

proteins integrated into the membrane for the 

biosorption of heavy metal ions 
1, 6, 12

. However, 

less metal biosorption capacity of gram-negative 

bacteria is linked with the presence of 

lipopolysaccharides and phospholipids 
13, 14

. The 

initial step in metal ion biosorption is metal 

interactions with functional groups such as 

hydroxyl, carboxyl, amine, etc.
 3

.
 
Bacillus firmus 

and Bacillus cereus are the gram-positive bacteria 
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that have the capability of copper biosorption 
11, 15

. 

Because Bacillus sp. possesses a basic cell 

envelope, the exported protein molecules simply 

need to pass through the cytoplasmic membrane to 

exit cell 
16

. The copper breakdown is 94 % at a 

temperature of 30
o
C in Streptomyces sp. AB5A by 

the mechanism of cupric reductase activity for the 

breakdown of copper from wastewaters. The 

absorption of various metals has been attributed to 

exopolysaccharides generated by bacterial cells. 

Bacillus subtilis biosorb iron by producing exopoly 

saccharides 
17

. 

Algal Cell Biology that Aids in Metal Ion 

Uptake: Polysaccharides, namely chitin, xylan, 

mannan, and others, comprise the cell wall in algae. 

The functional groups serve as metal ion binding 

sites. Algal cell walls have the same functional 

groups as bacteria but contain imidazole-

additionally 
2
. The major mechanism for the uptake 

of metal ions occurs when the metal binds on the 

outer cell surface to the functional groups present. 

Subsequently, it is internalized, as specified for 

zinc metal ions uptake by Nostoc muscorum 
18

. 

Another example, Chaetoceros calcitrans being a 

microalga shows biosorption ability of copper. 

According to a study conducted by (Pratiwi et al. 

2019), Chaetoceros calcitrans can biosorb copper 

from wastewater 
19

. "The presence of several 

functional groups on the surface of Chaetoceros 

calcitrans cells, such as carboxylic, hydroxyl, 

amino, sulphate, sulfhydryl, and phosphate groups, 

aids in the biosorption of copper ions" 
20

. 

Furthermore, various proteins and polysaccharides 

on the cell wall surface aids copper adsorption by 

binding copper to the cell surface. The amount of 

Cu absorbed by Chaetoceros calcitrans, on the 

other hand, decreases when the concentration of 

metal ions rises 
21

. Nostocsp. can biosorblead and 

iron 
22

, Nostoc muscorum can biosorb zinc 
59 

and 

cadmium 
23

, from the wastewaters. 

Fungal Cell Biology that Helps in Uptake of 

Metal Ions: Due to the unique composition of cell 

walls and the presence of functional groups that act 

as metal binding sites, fungi such as Aspergillus 

niger have proven to be effective for metal ion 

biosorption, cadmium 
24 

and nickel 
6
. Lipids, 

polysaccharides (90 %), chitins, mannans, etc., 

make up the cell walls. Carboxyl, phosphate, 

proteins, chitins and chitosan are the functional 

groups that serve as metal binding sites in fungi, 

chitins and chitosan being specific for fungi 
16

. The 

exterior of the cell wall behaves as ligand for 

binding metal ions, eliminating the inorganic ions 
25-27

.  

TABLE 1: REMOVAL EFFICIENCY OF MICROORGANISMS FOR HEAVY METAL IONS FROM 

WASTEWATERS OF ANTIBIOTIC-PRODUCING PHARMACEUTICAL INDUSTRY 

 *ND: Not Determined, (+): Gram Positive, (-): Gram Negative. 

Removal Efficiency of Microorganism for 

Antibiotic Pharmaceuticals in Effluents of 

Antibiotic Producing Pharmaceutical 

Industries: Antibiotics on the other hand, are 

nowadays prescribed largely by health 

professionals around the world. The COVID-19 

pandemic has had a negative influence on the 

world, increasing antibiotic usage while also 

To be 

degraded 

 

Name of microorganism Type of 

microorganisms 

pH Temp. Removal 

efficiency (% 

or mg/g) 

Cu 
5, 9, 11, 

28, 29
 

 

Bacillus firmus, Bacillus cereus, 

Streptomyces sp. AB5A, Chaetoceros 

calcitrans, Stenotrophomonas maltophila 

Bacteria (+) Bacteria 

(+) Bacteria (+) Algae 

Bacteria (-) 

3.5, 5.5, 

7, -, 5 

25
o
C, 25

o
C, 

30
o
C -, 

25
o
C 

74%, 50.32 

mg/g, 94%, 

ND, 0.57mg/g 

Zn 
5, 25, 30-

32
 

Bacillus firmus, Nostoc muscorum, 

Sargassum sp. (Brown Algae) 

Bacteria (+), Algae, 

Algae 

-, -, 3 -,- 30
o
C 69.8%, 66%, 

15.4mg/g 

Cd 
1, 5, 13, 33

 

 

Nostoc muscorum, Pseudomonas 

aeruginosa, Chaetoceros calcitrans, 

Aspergillus niger 

Algae, Bacteria (-), 

Algae, Fungus 

-, 8 

-, 4.75 

-, 42
o
C 

-, 25
o
C 

95.4%, 92% 

ND, 96.98% 

Ni 
5, 6, 15, 12, 

15, 34
 

Aspergillus niger, Micrococcus sp., 

Fucus vesiculas 

Fungus, Bacteria (+), 

Algae 

6.8-7.2, 5 

5 

29
o
C, 30

o
C-

35
o
C, 25

o
C 

25.05 mg/g, 

55%, 0.8 mg/g 

Pb 
5, 32, 35, 

37 
Chlorella vulgaris, Bacillus cereus 

NSPA8, Nostoc sp. 

Algae, Bacteria (+), 

Algae 

6, - 

6.5-7 

25
o
C, 37

o
C 

90
o
C 

78%, 98.3% 

99.6% 

Fe 
26, 32, 38, 

40
 

Bacillus subtilis, Sargassum sp. (Brown 

algae), Nostoc sp. 

Bacteria (+), Algae, 

Algae 

-, 3, 6.5-

7 

-, 30
o
C, 

90
o
C 

ND, 14.6 

mg/g, 97.7% 
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increasing antibiotic production. Hence, due to 

increased demand, the pharmaceutical industries 

have increased their production capabilities of such 

drugs; this is indicated by the frequent detection of 

antibiotics in high concentration in the effluent 

from such industries. Antibiotics that are freely 

available in the environment can create antibiotic-

resistant bacteria, which can inflict massive 

destruction around the planet. However, it is still 

unknown how the presence of other 

pharmaceuticals along with the antibiotics 

mentioned below, will affect the microbes' 

capability to degrade them.   

Some of the most regularly identified antibiotics in 

pharmaceutical industry effluents are listed below, 

along with the method of their breakdown by 

microbes: 

Oxytetracycline and chlortetracycline breakdown in 

the similar way. Both antibiotics found in 

wastewaters were broken down into the same 

breakdown product. In their study, (Wang et al. 

2018) used microbial fuel cells to remove 

oxytetracycline antibiotics from effluents. The fuel 

cells reactors were split into open-circuit microbial 

fuel cells and closed circuit microbial fuel cells. 

Stenotrophomonas sp., Azospirillum sp., and 

Pandoraea sp. were found in the closed circuit 

Microbial fuel cell, while Stenotrophomonas sp., 

Burkholderia sp., and Pandoraea sp. were found in 

the open circuit Microbial fuel cell. After seven 

days, it eliminated 78 percent of the oxytetracycline 

and 74.2% chlortetracycline 
41 

Table 2.  

The study also detailed the likely oxytetracycline 

breakdown process using fuel cells. According to 

(Wang et al. 2018), oxytetracycline and 

chlortetracycline were broken down into 3- 

hydroxy cyclohexanone as their degradation 

product begins with the extraction of both a 

hydroxyl and a hydrogen atom from the carbon 

atom 
42, 43

. The dehydration of the chemical results 

in the creation of anhydrous oxytetracycline and 

chlortetracycline. After a series of processes, 3-

hydroxycyclohexanone was formed, which was 

then transformed to CO2 and H2O by hydroxyl 

radical assault 
62

. Sulfamethoxazole was identified 

to be another antibiotic from the wastewater 
36

, and 

was detected in seven wastewater plants in USA 
30 

and Hong-Kong 
34

 ranging between 0.05 g/L - 0.37 

g/L and 5ng/L to 300 ng/L, respectively. 

Paucibacter sp. and Filomicrobium sp. were found 

to be capable of removing 89 percent of 

Sulfamethoxazole from wastewater 
18

. At the end 

of the aerobic phase, six cycles of aerobic and 

anoxic cycles were repeated, resulting in the 

creation of a substantial quantity of nitrates, which 

were then eliminated via anaerobic procedures 
18

. 

Likewise, (Lin et al. 2015) discovered that 

Pseudomonas sp. CE21 could degrade around 95% 

of the sulfamethoxazole antibiotic from doses of 

0.1ppm of sulfamethoxazole 
35

. Sulfamethoxazole 

was degraded into 3-amino-5methylisoxazole when 

Sulfamethoxazole was broken down in microbial 

fuel cells by combining electrical activity with 

microbial activity 
44

. (Lin et al. 2015) proposed that 

further research be done to understand the organic 

compound breakdown mechanisms 35 better. 

(Lin et al. 2015) recognized two Cefalexin-

degrading strains of Pseudomonas sp., namely 

Pseudomonas sp. CE21 and Pseudomonas sp. 

CE22. Pseudomonas sp. CE22 can degrade over 

92.1 percent of cefalexin after 24 hours of 

incubation in the presence of 1ppm cefalexin in the 

medium, while Pseudomonas sp. CE21 can 

eliminate 46.7 percent 
35

 Table 2. The cefalexin 

degradation capacity of Pseudomonas sp. CE 21 

and Pseudomonas sp. CE22 did not change when 

the concentration of Cefalexin was increased to 10 

ppm in both cases to determine the strains' maximal 

tolerating capacity, as determined by the study.  

In contrast, (Lin et al. 2015) found that the 

presence of any other pharmaceutical at 

concentrations as low as 1ppm massively 

diminished the removal potency of Cefalexin by 

Pseudomonas sp. CE22, though not by 

Pseudomonas sp. CE21 
35

. Pseudomonas sp. CE 21 

and Pseudomonas sp. CE22 both metabolized 

cefalexin by breaking it down into "2-hydroxy-3-

phenyl pyrazine" as the degradation product 
35

. 

Norfloxacin was detected in seven Hong Kong 

wastewater plants at concentrations varying 

between 35ng/L to 4000ng/L 
34

. This confirms their 

presence in the wastewaters. According to 

(Parshikov 2012), norfloxacin was degraded by E. 

coli, Pseudomonas sp., Microbacterium sp., 

Mycobacterium sp., and Streptomyces sp. via site-

specific hydroxylation 
45

 Table 2.  
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The study also indicated norfloxacin metabolism, 

which includes both N-acetylation and splitting the 

antibiotic compound's piperazine ring. 

Mycobacterium gilvum degraded norfloxacin in the 

effluent to generate N-acetyl norfloxacin, 6-

hydroxynorfloaxcin, 8-hydroxynorfloaxcin, and 

desethylene N-acetyl norfloxacin as by-products, 

whereas Microbacterium sp. degraded norfloxacin 

to generate N-acetyl norfloxacin (same by product 

of metabolism of norfloxacin by Microbacterium 

sp. and Mycobacterium gilvum) 
45

. Trichoderma 

viride was cultured in a medium containing 

norfloxacin, which formed conjugates when the 

antibiotic reacted with the cyclopentanone 

secondary metabolite of Trichoderma viride 
45, 63

. 

Likewise, degradation of Norfloxacin by 

Pestalotiopsisguepini generated by-products such 

as N-acetyl norfloxacin, N-formyl norfloxacin, 

desethylene N-acetyl norfloxacin, and 7 – amino – 

1 – ethyl – 6 – fluoro - 4oxo - 1, 4-

dihydroquinoline-3-carboxylic acid 
45, 63

. 

Norfloxacin has complete structural similarity with 

ciprofloxacin, except ciprofloxacin contains an 

additional N-cyclopropyl group. The presence of 

ciprofloxacin in wastewater were confirmed when 

they were detected and isolated from seven 

different wastewater plant of Wisconsin of USA at 

concentrations varying between 0.04 µg/Lto 0.14 

µg/L 
30

. Ciprofloxacin degrading capacity was 

discovered in Umbelopsis rammaniana, that 

metabolized ciprofloxacin to yield N-acetyl 

ciprofloxacin 
46

. Furthermore, Pestalotiopsis 

guepini can break down ciprofloxacin into N-

formyl ciprofloxacin, N-acetyl ciprofloxacin, 7-

amino – 1 – cyclopropy l - 6 – fluoro - 4-oxo-1,4-

dihydroquinoline-3-carboxylic acid, as well as 

desethylene N-acetyl ciprofloxacin 
47

. Tinea 

versicolor was also identified as having the ability 

to degrade ciprofloxacin by converting it to the 

molecules 8-hydroxy ciprofloxacin, 7-amino-1-

cyclopropyl-6-fluoro-4-oxo-1, 4-dihydroquinoline-

3-carboxylic acid and desethylene ciprofloxacin 
50

. 

TABLE 2: REMOVAL EFFICIENCY OF MICROORGANISMS FOR ANTIBIOTICS FROM ANTIBIOTIC-

PRODUCING PHARMACEUTICAL INDUSTRY WASTEWATER 

Name of Antibiotics Name of Degrading 

Microorganisms 

Antibiotic 

Source 

Removal 

Efficiency (%) 

Time 

Oxytetracycline 
51-57

 

 

Closed circuit Microbial fuel cell; 

Stenotrophomonas sp. Azospirillum 

sp. Pandoraea sp. Open circuit 

Microbial fuel cell: 

Stenotrophomonas sp. Burkholderia 

sp. Pandoraea sp. 

Microbial fuel 

cells 

78% 

 

7 days 

Chlortetracycline 
58-63

 

 

Closed circuit Microbial fuel cell: 

Petrimonas sp. Azospirillum sp. 

Dokdonella sp. Open circuit 

Microbial fuel cell: Petrimonas sp. 

Burkholderia sp. Stenotrophomonas 

sp 

Microbial fuel 

cells 

 

 

 

74.2% 

7 days 

Sulfamethoxazole 
14, 18, 35, 77

 

 

Paucibacter Filomicrobium 

Paucibacter sp. Filomicrobium 

sp.Pseudomonas sp. CE21 

Bioreactor, 

Bioreactor 

Sludge 

(Activated) 

89% 

89% 

95% 

5 days 

5 days 

24 hours 

Cefalexin 
71, 76

 

 

Pseudomonas sp. CE21, 

Pseudomonas sp. CE22 

Sludge 

(Activated) 

Sludge 

(Activated) 

46.7% 

92.1% 

24 hours 

24 hours 

Norfloxacin 
77, 80 

 

Escherichia sp.Pseudomonas sp. 

Microbacterium sp. Mycobacterium 

gilvum, Streptomyces sp. 

Trichoderma viride, 

Pestalotiopsisguepini 

Wastewater 

treatment plant 

ND - 
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Ciprofloxacin 
 81, 82 

 

Umbelopsis rammaniana, 

Pestalotiopsisguepini, Tinea 

versicolor 

Wastewater 

treatment plant 

ND 

 
- 

*ND: Not Determined 

DISCUSSION: As can be observed from the 

above, additional study is required to optimise the 

removal efficiency of antibiotics and heavy metal 

ions found as pollutants in the effluents of 

pharmaceutical companies that manufacture 

antibiotic drugs. The removal efficiency (%) of 

Cadmium (Cd) and Copper (Cu) by Chaetoceros 

calcitrans could not be determined 
49

. However, no 

such published results are available that have 

determined the removal efficiency (%) of Cd and 

Cu by Chaetoceros calcitrans. However, the study 

conducted by (Pratiwi et al. 2019), calculated the 

Bioconcentration Factors (BCF) based on the 

capacity of absorbance of heavy metal; copper and 

cadmium. The researchers identified the 

relationship between BCF and the concentration of 

heavy metals to be inversely proportional to each 

other, indicating their ability to accumulate heavy 

metal ions even at low concentrations 
49

. But in the 

case of pharmaceutical firms producing copper and 

cadmium at concentrations above normal levels, 

i.e., 1.9 ppm approx., the biosorption capacity of 

such metals by Chaetoceros calcitrans will 

significantly decrease 
49

. Concerning the event that 

antibiotics are found in pharmaceutical company 

wastewater effluents, more studies need to be 

conducted to identify the potential removal 

efficiency (%) of Escherichia sp., Pseudomonas 

sp., Microbacterium sp., Mycobacterium gilvum, 

Streptomyces sp., Trichoderma viride, 

Pestalotiopsis guepini fornorfloxacin and 

Umbelopsis rammaniana, Pestalotiopsisguepini, 

Tinea versicolor for ciprofloxacin. Superbug strains 

could be created in-vivo by isolating genes from 

different microorganisms such that one microbe 

could breakdown several antibiotic drugs or heavy 

metal ions. This would be extremely advantageous 

for the pharmaceutical industries, enabling them to 

save cost and time. 

Discussion on the Potential of Bacillus sp. to 

Remove Heavy Metals from Effluents of 

Antibiotic Producing Pharmaceutical Industry: 

Bacillus sp. is particularly efficient for 

biodegradation purposes, as evidenced by the 

preceding studies, as it can biodegrade numerous 

heavy metals. Bacillus firmus could biodegrade 

Copper (74% biodegradation efficiency), Zinc 

(69.8% biodegradation efficiency), Bacillus cereus 

can biosorb copper (50.32mg/g biodegradation 

efficiency), strain NSPA8 of Bacillus cereus can 

biosorblead (98.3% removal efficiency). According 

to scientific literature, Bacillus subtilis is likewise 

capable of biosorption of Fe; however its removal 

efficiency could not be confirmed. However, more 

research is needed to identify the precise removal 

efficiency of iron by Bacillus subtilis. 

Discussion on the Potential of Pseudomonas sp. 

to Remove Antibiotics from Pharmaceutical 

Industry Wastewater: Pseudomonas sp. is an 

unique genus of bacteria capable of breaking down 

a wide range of antibiotic drugs.Pseudomonas sp. 

CE 21 can digest Sulfamethoxazole (Biosorption 

efficiency: 95%) and Cefalexin (Biosorption 

efficiency: 95%). (Biosorption efficiency 46.7%). 

Additionally, the strain Pseudomonas sp. CE 22, 

can biodegrade Cefalexin (Biosorption efficiency 

92.1 %) 
35

. 

Both strains of Pseudomonas sp., Pseudomonas sp. 

CE21 and Pseudomonas sp. CE22, decomposed 

cefalexin by producing "2-hydroxy-3-phenyl 

pyrazine" 
35

. In order to investigate the effect of 

other drugs on the degradation capability of 

Pseudomonas sp. CE21 and Pseudomonas sp. 

CE22, the study included a combination of nine 

other medications that are commonly found in 

wastewater at concentrations of 1ppm each. 

Pseudomonas sp. CE21 exhibited no significant 

changes in Cefalexin degradation capacity after a 

day, whereas Pseudomonas sp. CE22 showed a 

substantial drop in biodegradation efficiency in the 

presence of other pharmaceutical waste fluids 
35

. It 

can be assumed that the wastewater from such 

pharmaceutical firms will always contain a mixture 

of all medications, not just cefalexin. As a result, 

the strain CE21 can be deemed more efficient in 
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biodegradation than CE22, because the presence of 

other pharmaceutical medications in the effluents 

has no effect on removal efficiency. 

Discussions on the Reusage of Wastewater from 

Antibiotic Producing Pharmaceutical Industry: 

In accordance with the guidelines by the World 

Health Organization (WHO) for reusing 

wastewater, first, the treated wastewater should 

have no presence of faecal coli forms, secondly 

there should be the absence of cases of enteric 

diseases in the exposed population, and thirdly 

annual risk assessment should be done with the 

help of a quantitative microbial risk assessment 

model. Wastewater is cleansed and reused in 

drought-prone locations and countries, such as the 

Middle East, where fresh water is scarce. In such 

circumstances, wastewater should be free of any 

antibiotics or heavy metal ions, as these substances 

may cause bacteria to develop resistance to 

particular antibiotics, or heavy metal ions may 

harm human populations, crops and animals. 

Antibiotics in wastewater should be detected in 

very low quantities by wastewater treatment plants, 

as some antibiotics may be diluted, making 

detection difficult 
37

.  

The effluent is processed and then used in 

agriculture. Considering these conditions, 

wastewater should always be free of pollutants that 

could cause crops to absorb antibiotics. According 

to a study (Wu et al. 2012), spinach, lettuce, and 

tomatoes are vegetables that absorb 

Sulfamethoxazole when treated wastewater is used. 

Sulfamethoxazole is taken up by spinach and 

lettuce at concentrations below the technique limit 

of detection, whereas tomatoes uptakes them at 

concentrations of 9.7 ± 0.6 ng/g of dry weight, 

making it a matter of concern since such veggies 

are frequently consumed uncooked and hence may 

eventually reach humans 
64

. Antibiotic resistance 

microorganisms have emerged due to inappropriate 

and excessive antibiotic use in humans and 

animals, which may have negative environmental 

consequences. Antibiotic dosage below the 

prescribed level, i.e., subtherapeutic levels, for an 

extended period causes bacteria to become resistant 
8
. In Oman, a study (Al-Bahry 2012) discovered the 

prevalence of antibiotic-resistant bacterial strains in 

wastewater for Sulfamethoxazole with a resistance 

capability of up to 95% 
7
.  

Antibiotic-resistant bacteria may come into touch 

with crops, posing a threat to agriculture 
8
. As a 

result, pharmaceutical companies should exercise 

extreme caution when dumping wastewater into 

nearby bodies of water. In addition, wastewater 

treatment plants should collaborate to identify 

antibiotics and heavy metal ions in wastewater, 

even in extremely low quantities. 

Future Applications for Product Recovery from 

Different Pharmaceutical Industry Wastewater: 

Bio-stimulation or Bioaugmentation:  In the 

process of bio-stimulation, the growth conditions of 

the microorganism can be altered by altering the 

pH, nutrients, oxygenation or by adding 

biosurfactants. This may allow the microbes to 

withstand stress from the surrounding medium and 

adapt to it.  

Widening the use of Genetically Modified 

Microorganism: Genetically modified organisms 

can have better biodegradation capacities along 

with better tolerance to heavy metals, antibiotics 

etc. Such can also degrade multiple antibiotics, 

drugs, or heavy metals in one go. Such can be 

brought in by introducing stress-resistant genes into 

the genome of the microbes, leading to the 

development of new strains. 

CONCLUSION: This review represents the use of 

microorganisms to treat effluents from antibiotic-

producing pharmaceutical industries. The treatment 

includes the treatment of several heavy metal ions 

as well as antibiotics which are commonly found in 

wastewater from such pharmaceutical industries.  

The harmful phenomena exhibited by the pollutants 

is resulting in severe global environmental issues, 

which shall be increasing in the near future if not 

addressed properly. Several studies have been 

performed to know the constituents of the effluents 

and microorganisms involved in their biosorption. 

Such industries will benefit from this regarding 

efficient management of effluents before 

discharging them into water bodies. Also, the 

biomass generated from treating the effluents can 

be used later. This technique can prove itself 

economical for every pharmaceutical industry, 

whether small or large because an industry can only 

carry out a process if it seems economical. Such 

pharmaceutical industries should also focus on 
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producing superbugs which will make this effluent 

treatment process more economical to them. Also, 

the microorganisms can be used again and again 

several times.  

 
FIG. 1: COMPARISON OF WATER POLLUTION 

AMONG SEVEN DIFFERENT COUNTRIES 

From Fig. 1, it is evident that India is still behind 

several developed nations regarding water 

pollution. Since the situation still in control, stricter 

regulations should be implemented to decrease the 

level of pollutants in the wastewater. The drainage 

of harmful effluents from the antibiotic-producing 

pharmaceutical industries into nearby water bodies 

threatens the aquatic systems and the humans using 

them. Heavy metal ions are known to be a major 

cause of diseases of skin in human beings and 

animals. Further, antibiotics present in wastewater 

from pharmaceutical industries are discharged into 

the water bodies and ingested by fishes, humans 

and animals, which identifies it as a major matter of 

concern. Recent advancements in this technique 

should be implemented and popularized, 

emphasizing the production of genetically modified 

microbes to produce superbugs that could degrade 

several pollutants from the effluents of the 

pharmaceutical industry producing antibiotic drugs 

at once. This shall result beneficial for the 

pharmaceutical industries.  
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