
Majhi and Kashyap, IJPSR, 2023; Vol. 14(8): 4170-4192.                             E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              4170 

IJPSR (2023), Volume 14, Issue 8                                                                   (Research Article) 

 
Received on 31 October 2022; received in revised form, 28 July 2023; accepted 29 July 2023; published 01 August 2023 

DEVELOPMENT AND ASSESSMENT OF DIFFERENT BALANCING TECHNIQUES AND 

DEEP LEARNING BASED EARLY MORTALITY PREDICTION MODELS FOR ICU 

IMBALANCE DATA 

Babita Majhi and Aarti Kashyap 
*
 

Department of CSIT, Guru Ghasidas Vishwavidyalay (Central University), Bilaspur - 495009, 

Chhattisgarh, India. 

 

 

 

 

 

 

 

 

ABSTRACT: Predicting ICU patient’s mortality is an important area of 

research to assist the clinical staff in decision-making, and subsequently 

make more exact strategies in recognizing high mortality risk patients. 

Handling huge clinical data is still a challenge. These data have different 

issues such as high dimensions, many missing values, imbalanced data, time-

series and data recorded irregularly. This paper mainly focuses on 

developing four different deep learning models: deep neural network (DNN), 

deep long-short term memory (DLSTM), deep bidirectional long-short term 

memory (DBLSTM) and deep gated recurrent unit (DGRU) using two 

standard datasets, the Physionet challenge 2012 and WiDS datathon 2020 to 

predict the ICU patients mortality. During the simulation study, missing 

values are handled using k-NN imputation in Physionet and mean imputation 

in WiDSdatathon, then balancing of the data is done by employing synthetic 

minority oversampling technique (SMOTE), cost sensitive learning (CSL) 

and generative adversarial network (GAN). Feature extraction is done by 

using discrete wavelet transform (DWT) in WiDS datathon. From the 

simulation study, it is demonstrated that the (SMOTE+DGRU) has obtained 

AUC, F1-score and accuracy of 0.8081, 0.7964, 0.8081 respectively in 90 

epochs for Physionet challenge 2012. Whereas (SMOTE+DBLSTM) has 

provided AUC, F1-score and accuracy of 0.8724, 0.8739, 0.8724 

respectively for same epochs for WiDSdatathon. In overall, it is observed 

that the SMOTE balancing technique is performing better in comparison to 

CSL and GAN. 

INTRODUCTION: In the past years, the mortality 

prediction of ICU patients has been an important 

area in medical research. The serious consideration 

units are intensive care units (ICU) that treat highly 

sick patients, who need consistent care to survive 
1
.  

QUICK RESPONSE CODE 

 

DOI: 
10.13040/IJPSR.0975-8232.14(8).4170-92 

This article can be accessed online on 
www.ijpsr.com 

DOI link: https://doi.org/10.13040/IJPSR.0975-8232.14(8).4170-92 

According to US, 10% to 20% of patients are dying 

in the hospital and more than five million patients 

are taking admission in the ICU every year 
2
.  

Various types of medical and bio-signal sensors are 

utilized in the ICU unit, generating more data 
3
. 

Due to a large amount of data, it is challenging for 

medical care suppliers to work on the current usage 

of normal measures, models, results of lab tests, 

and patient-checking signals 
4
. Secondly, 

ventilators and medical equipment are high in cost. 

Likewise, countless available ICU beds can cause 

high monetary expenses 
5
.  
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Due to the high cost of the ICU, patients are unable 

to afford it. Also, ICUs have various staffs in 

contrast with the quantity of patients conceded for 

standard checking. Mortality prediction will help in 

managing the costly equipment, manpower, and 

other resources. Traditionally, several scoring 

frameworks have been developed to handle the 

severity of illness scores for predicting a patient's 

death or survival in the ICU. These scores are 

Acute Physiology and Chronic Health Evaluation 

(APACHE) 
6
, Mortality Probability Model (MPM) 

6
, Simplified Acute Physiology score (SAPS) 

6
 and 

Sequential Organ Failure Assessment (SOFA) 
6
. 

In the present era, several machine learning, and 

deep learning models are utilized in real-life 

examples for solving the problem of classification 

and prediction. Mortality prediction of the ICU 

patients is a binary classification problem which 

can be solved by employing different machine 

learning approaches. On the view of above, two 

datasets Physionet challenge 2012 
7 

and 

WiDSdatathon 2020 
8 

are used for simulation. The 

Physionet and Kaggle websites have provided 

challengesto develop different machine learning 

models for the ICU patient's mortality prediction 

for the above datasets respectively. The Physionet 

challenge has also floated two events to find out the 

results i.e. event I and event II. Event I is the 

measurement performance of the binary classifier 

and event II is the measurement performance of the 

risk estimator. Event I is evaluated using two 

scoring criteria by finding the minimum value 

between the precision (+P) and sensitivity (Se) and 

event II, a challenge is given for the modification in 

Hosmer Lemeshow statistic 
9
. Higher the value is 

better for score 1, which should be closer to 100, 

and lower the value is better for the score 2, which 

should be closer to 0. 

WiDSdatathon 2020 has provided 91,713 patient's 

data with 188 features. 

Both the datasets are high dimensional, 

imbalanced, and a synchronized, hence causes 

more complex computation to the classifier and 

degrades the performances. Some of the machine 

learning algorithms which have been used in the 

past for the purpose are Support Vector Machine, 

Linear Regression, Multilayer Perceptron, Naive 

Bayesian, Random Forest, Decision Tree 
10

. 

Deep learning is the state-of-art, a subfield of 

machine learning used to handle large and complex 

data. It automatically extracts the hidden 

information from data and classifies the model 
11

. 

Being motivated by the advantages of deep 

learning, it is proposed for the ICU patient's 

mortality prediction for the first time. The primary 

approaches of this paper is described as follows: 

 Different pre-processing techniques are applied 

to mitigate imbalance, irregular, and missing 

data problems exist in the datasets. 

 Three different data balancing techniques: 

synthetic minority oversampling technique 

(SMOTE), cost-sensitive learning (CSL) and 

generative adversarial network (GAN) are used 

and results are compared. 

 It has proposed four different deep learning 

models, DNN 
12

, DLSTM 
13

, DBLSTM 
14

 and 

DGRU 
15

 for the ICU patients mortality 

prediction. 

The ICU patient's mortality prediction is a binary 

classification problem, where 0 represents survival 

and 1 represents the patient's death. The Physionet 

and WiDSdatathon datasets are huge in size and 

imbalanced. Some features have over half of (50%) 

of missing information, making it more challenging 

to develop a suitable model for it. Most of the 

authors adopted different strategies to handle the 

missing data to improve classification performance. 

Some authors handle time-series data by converting 

the irregular data into regular data and then using 

different statistical measures like first, last, 

minimum, maximum and mean value of the 

features. Others used imputation methods such as 

mean imputation and interpolation to handle 

missing data problems.  

Many authors have used different feature selection 

methods to choose relevant features out of a large 

number of features available. Some authors have 

used only set A 
3, 17, 21-29

, some used set A, B 
4, 18-20, 

30-36
 both and others used all three datasets (A, B 

and C) 
16 

of Physionet for training, testing and 

validating their proposed machine learning 

models. The review of the literature published in 

recent past using Physionet data and WiDS data are 

given as below: 
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SAITS, a unique technique for missing value 

imputation in multivariate time series, is proposed. 

SAITS is based on the self-attention mechanism. 

With the use of a joint optimization technique, 

SAITS is trained to extract missing values from a 

weighted mixture of two DMSA (diagonal masking 

of self-attention) blocks. DMSA directly captures 

the feature correlations and temporal connections 

across time steps, which boosts training efficiency 

and imputation precision 
16

. For PyTorch, the 

torchtime Python package offers reproducible 

implementations of the frequently used PhysioNet 

and UEA&UCR time series categorization 

repository data sets. There are tools available for 

working with time series of unequal length that 

have irregularly sampled data and partial 

observations. It seeks to facilitate fair model 

comparisons in this fascinating field of study and 

streamline access to PhysioNet data 
17

.  

MultiTime Attention Networks, a brand-new deep 

learning framework is developed. In order to create 

a fixed-length representation of a time series 

having a variable number of observations, Multi-

Time Attention Networks develop an embedding of 

continuous time values. Utilizing various datasets, 

we examine how well this framework performs 

interpolation and classification tasks 
18

. To 

represent this non-commutativity, 
19

employ the free 

algebra, a traditional mathematical construct. Also, 

employ low-rank tensor projection compositions to 

address the inherent computational complexity of 

this algebra. As a result, scalable, modular building 

blocks are produced, providing state of the art 

performance on common benchmarks including 

multivariate time series classification, mortality 

prediction, and generative video models. 

The ODE-RNNs family of time series models, 

which uses neural ordinary differential equations to 

specify the hidden state dynamics (Neural ODEs) is 

presented. Firstly, it looked into this model as a 

solo RNN improvement. Also applied this model to 

enhance the Latent ODEs variational autoencoder 

model's recognition networks. Latent ODEs offer 

explicit uncertainty estimates regarding latent states 

as well as generally interpretable latent states. Both 

models are appropriate for the irregularly sampled 

time series data that are frequent in many 

applications because neither one calls for 

discretizing observation times or imputing data as a 

preprocessing step. Finally, they show that the rates 

of observations can be modelled by combining 

continuous-time latent states with Poisson 

processes 
20

. Monteiro, et al. 
4
 have mainly focused 

on three objectives. Firstly, they reduce the 

dimensions, decreases the uncontrolled variance, 

and make the model less dependent on the training 

set. Also, they have employed feature selection and 

feature reduction techniques and done multivariate 

data analysis using spectral clustering, principal 

component analysis (PCA), factor analysis (FA), 

and Tukey’s HSD test. Then different machine 

learning classifiers are applied to find out the best 

score using all three datasets (A, B, and C) and 

reported that the random forest (RF) classifier 

performs better in set A.   

In 
21

, the authors have proposed a new combined 

algorithm, named as just-in-time learning (JITL), 

and one class extreme learning machine (ELM), 

which predicts the length of days stays in the 

hospital using set A. In the combination of JITL 

and one class ELM, the JITL is utilized to look for 

customized cases for patient and one-class ELM is 

used to choose if the patient can be delivered 

within 10 days. The aim of 
22

 is to investigate, how 

early it predicts the ICU patient's mortality. The 

authors have conducted the time series analysis 

using various data mining techniques during the 

initial 48 hours of the admission. The experiment is 

conducted with different models, traditional scoring 

system, filter, and imbalanced algorithm, SMOTE. 

The Filter with SMOTE method performs better in 

comparison to other models.  

The cost-sensitive principle component analysis 

(CSPCA) and chaos particle swarm optimization 

(CPSO) are adopted in 
3
 to find out the best 

solution for this problem using support vector 

machine (SVM) as classifier. They focus on highly 

imbalanced ICU big dataset A and used CPSO, for 

parameter optimization of the SVM classifier. To 

resolve the challenges of the data, the authors have 

applied different analytical tools and techniques 

during pre-processing, feature extraction and 

feature selection. The authors in 
23

 have reported 

Gated Recurrent Neural Network-D (GRU-D) 

model for mortality prediction. They try to 

implement multivariate time series data with 

missing values using GRU-D. Two representations 

of GRU-D, masking and time interval are 
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integrated with the deep learning model 

architecture. Hence, it captures long-term temporal 

dependencies and achieves better performances. A 

novel machine-learning algorithm, which combines 

just-in-time learning with extreme learning 

machine known as JITL-ELM has been proposed in 
24

 and tries to optimize variables globally. A new 

framework is proposed in this paper using 

clustering for mortality prediction. 

Classification of imbalanced data is an important 

problem in the area of clinical or medical data. 

Designing a new algorithm to resolve the 

imbalance issue in the clinical data, using different 

transformation techniques for feature 

transformation, and hypothesis testing are proposed 

in 
25,

 
26 

has developed two new approaches known 

as single task transfer learning and multi-task 

transfer learning using small size and imbalanced 

class data. They have used patients ICU types 

(coronary care unit (CCU), cardiac surgery 

recovery unit (CSRU), medical ICU(MICU) and 

surgical ICU(SICU)) for the prediction of 

mortality. Out of these two approaches, multi-task 

transfer learning has obtained a better score1. A 

two-phase hybrid framework using clustering for 

this purpose is developed in 
27

.  

In the starting phase, clustering is used to get the 

knowledge and in the next phase, classifiers 

(namely SVM, ANN, and DT) are constructed out 

of which the SVM classifier performs better. In the 

preprocessing, a segmentation-based method is 

used that divides different variables into various 

segments. To maintain the statistic of the features, 

maximal-minimal values are considered. A post-

surgical decision support system is developed using 

multilayer neural network 
28

. It focuses on the 

missing values of the variables and divides them 

into 4 groups – (1) General descriptor variables - 

taken at the time of admission, (2) Low-sampling 

variables - variables that have 50% of missing 

values, (3) Medium sampling variables - mean for 

each variable less than 15 for each patient and (4) 

High sampling - extracting statistics (min, max, 

mean, median, etc.) for every variable [4]. The 

authors in 
29 

have compared the various 

preprocessing methods (missing value imputation, 

outlier detection, feature extraction, etc.) with the 

Box-Cox outlier rejection technique and employed 

regularized logistic regression model for mortality 

prediction. The SAPS-I, which is known as 

baseline algorithm used in 
30

. A classifier based on 

tree is proposed using Bayesian ensemble learning 

algorithm in 
31

. The proposed algorithm has special 

features that can detect outliers, handle missing 

values, and automatically normalise the data. To 

estimate the model performance, Jack-knifing 

method is applied.  

A logistic regression algorithm that trains the 

classifier and evaluates the classifier's performance 

using 10 fold cross validation is reported in 
32

. 

Here, missing values are handled using the mean 

imputation method. The SVM classifier, using 

general descriptors and time-series data to predict 

the ICU patient's mortality is done in 
33

. To deal 

with the missing values, "Imputation" method is 

used where it replaces missing value by "zero". To 

train the model, six different SVM classifiers are 

applied. For every SVM classifier, positive (overall 

samples) and negative (1/6
th

 samples) are taken as 

the training set. An artificial neural network(ANN) 

classifier has been developed using the 48 hours 

observations from the admission in 
34

. The ANN 

model predicts the risk of patient's mortality in 

hospitals using various physiological variables.  

A two-layered neural network model is proposed 

for the classification, which consists of 15 neurons 

in each hidden layer. Hundred voting classifiers are 

trained, and the result of the model is the mean of 

all hundred voting classifiers. The training and 

testing of the models use 5 fold cross-validation. 

Also, fuzzy threshold value determines the neural 

network output 
35

. focuses on time-series data or 

motiffs and developed Baseline, L1, L2, L3 and 

L1,2,3 models for predicting the ICU patient's 

mortality in hospital. It partitions the symbol 

sequences into different measurements (low 

measurement, high measurement and medium 

measurement). The developed models are shown as 

better than the traditional scoring systems such as 

SOFA, SAPS-II and APACHE-II. A model based 

on hidden markovmodel (HMM) and logistic 

regression (LR) using different vital signs is 

presented in 
36

. The HMM estimates the process 

hidden states using experimental variables. A 

framework is proposed in 
37

 containing an effective 

feature extraction by interpolating the data, analysis 

of histogram and temporal data. A cascaded ad a 

boost model is proposed, which cascades two 
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feature vectors obtained from histogram and 

temporal analysis. The fuzzy rule based system or 

fuzzy inference system (FIS) is used in 
38

 whose 

coefficients are optimized by using genetic 

algorithm (GA). The FIS has two options - (1) 

fuzzy rules and (2) coefficients. The coefficients, 

convert all the features into fuzzy values which are 

further processed by fuzzy rules. They also analyse 

the errors, and each fuzzy rule produces a fuzzy 

output which may be 'high' or 'very high', 'medium' 

and 'low' or 'very low'.  

A new technique, known as simple correspondence 

analysis (SCA) is proposed in 
39

 for the ICU 

patients mortality prediction. It combines the 

medical and laboratory data using two different 

conventional scoring systems such as SAPS-II and 

APACHE-II. It selects the most important features 

from the patient's information and identifies the 

relationship among different features and target 

variables (in-hospital death). A linear Bayes 

classifier is proposed to predict mortality in the 

ICU 
40

. During the pre-processing, 935 features are 

extracted from original features. Further, the 

features having more than 200 NAN values are 

removed and reduce it to 352 features. The 

remaining NAN values are replaced by mean 

values. A new binary classifier to predict ICU 

patients mortality admitted in the hospital is used in 
41

.  

A combination of the feature selection criteria, 

forward sequential selection and logistic regression 

(FSS-LRM) model is proposed. 32 variables are 

selected out of 42 for analysis using 10 fold cross-

validation on the training set A. To predict the 

mortality rate of the ICU patient's 
42

 has developed 

SVM model. During the preprocessing, each 

variable's mean, standard deviation, min and max 

value are extracted for further analysis. The SVM 

model faces the problem of over-fitting on the 

training set A. This issue is circumvented using 

random patterns. An approach is designed based on 

ANN in 
43

 to predict the ICU patient's mortality 

rate in the hospital. The missing values are handled 

by imputing the mean value and removing outliers. 

To train the network, 70% of data is used. A 

logistic regression model is utilized in 
44

 to predict 

mortality rate. Three different approaches used are 

– (1) selection of derived variables using set A, and 

calculation of first, last, mean, max, min, total time 

and first difference of each variable. (2) logistic 

regression model is employed to predict mortality 

rate using set A 
45

.  reports a logistic regression 

model (risk prediction model) for predicting the 

probabilities of mortality using 30 selected features 

from patients who admitted in the ICU. Study is 

done with the adult patients who admitted in the 

ICU in following categories - (1) Coronary Care 

Unit (CCU), (2) Medical ICU (MICU), (3) Cardiac 

Surgery Recovery Unit (CSRU) and (4) Surgical 

ICU (SICU). Sequence of steps used are: filtering, 

feature extraction and prediction.  

An ensemble model is developed using test-time 

augmentation (TTA) for tabular data, merging 42 

models. Predictive value imputation, or linear 

regression, and statistical value imputation, or 

mean/median are both used to handle missing 

values. Additionally, a number of functionalities 

are removed based on various factors. With a 

higher AUC, this ensemble model won the 

WiDsDatathon 2020 competition on the kaggle 

website 
46

. The remaining section is coordinated as 

follows: Section 2 deals with the materials and 

methods which describes collection of data, pre-

processing of data, balancing of data, as well the 

procedure for the development of prediction 

models. Simulation study, results and discussions 

are elaborated in section 3. The comparison with 

existing models is also dealt in this section. In 

section 4, conclusions are drawn. 

MATERIALS AND METHODS: 

Methodology for Mortality Prediction: The 

development of mortality prediction models 

undergo several steps as shown in Fig. 1. 

Step 1: Data collection: At first the problem is 

defined and data are collected,  

Step 2:  Pre-processing of raw data: Missing values 

are handled using k-Nearest Neighbour imputation 

(k-NN) 
47 

for Physionetand by mean imputation in 

WiDSdatathon. Balancing of the datasets are done 

using synthetic minority oversampling techniques 

(SMOTE) 
48

, cost sensitive learning (CSL) 
49

 and 

generative adversarial network (GAN) 
50

. Then the 

data are scaled using Min-Max normalization 

method. Finally the relevant features are extracted 

using DWT 
51

 from the WiDS data as the number 
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of features are very large. In case of physionet all 

features are used as input. 

Step 3: The selection of the models: DNN, 

DLSTM, DBLSTM and DGRU are employed as 

classifiers.  

Step 4: Training and Testing: Training and testing 

of the models are carried with proper tuning of 

hyper parameters and using 5 fold cross validation 

over the entire datasets. 

Step 5:  Performance measures: Different 

performance measures such as specificity, 

sensitivity, precision, F1-score, area under curve 

(AUC) and accuracy are evaluated.  

 
FIG. 1: STEP BY STEP PROCEDURE FOR THE DEVELOPMENT OF ICU MORTALITY PREDICTION MODELS

ICU Dataset: The datasets are obtained from the 

Physionet challenge 2012 
7
 and WiDSdatathon 

2020 
8
 websites, which contain data of patients 

admitted in the ICU for atleast 48 hours and 24 

hours respectively. These websites provide all 

physiological and biomedical information to the 

authors to develop various machine learning 

models for mortality prediction, which is helpful 

for researchers to conduct in-depth research 
21

. 

Physionet challenge 2012 provides three different 

datasets to the participants, i.e. Set A, B, and C. 

Each dataset consists of 4000 instances of patients. 

In total 12000 instances are available in set A, B, C 

and 42 features or variables individually. Out of 

these 42 features, six of them are general descriptor 

variables such as Record ID, Age, Height, Weight, 

Gender (female-0, male-1) and ICU type (Coronary 

Care Unit (CCU), Medical ICU (MICU), Cardiac 

Surgery Recovery Unit (CSRU) and Surgical ICU 

(SICU)), recorded at the time of patient's taking 

admission in the ICU. The rest 36 variables are 

time-series variables (multiple times observations 

are taken) as shown in Table 1. Outcome 

descriptors (in-hospital death) are also provided for 

each of these three sets A, B, and C. In-hospital 

death (target variable) comprises of two values (0 

and 1), where 0 - indicates the alive of the patients 

and 1- indicates the deceased of the patients in the 

hospital during the stay in ICU. 

TABLE 1: GENERAL DESCRIPTORS AND TIME-SERIES VARIABLES RECORDED IN THE ICU FOR 

PHYSIONET DATA 
52 

S. no. Variables Description Physical Units 

6-General Descriptor Variables 

1. Record ID Unique integer ID  

2. Age - years 

3. Gender Female(0), Male(1) - 

4. Height - cm 
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5. Weight - kg 

6. ICU type CCU, CSRU, MICU and SICU - 

36-Time-series variables 

1. Albumin Albumin g/Dl 

2. ALP Alkaline Phosphate IU/L 

3. ALT Alanine transaminase IU/L 

4. AST Aspartate transaminase IU/L 

5. Bilirubin Bilirubin mg/dL 

6. BUN Blood urea nitrogen mg/dL 

7. Cholesterol Cholesterol mg/dL 

8. Creatinine Creatinine mg/dL 

9. DiasABP Invasive diastolic arterial blood pressure mmHg 

10. FiO2 Fractional inspired oxygen [0-1] 

11. GCS Glasgow Coma Score [3-15] 

12. Glucose Serum Glucose mg/dL 

13. HCO3 Serum Bicarbonate mmol/L 

14. HCT Hematocrit % 

15. HR Heart Rate bpm 

16. K Serum Potassium mEq/L 

17. Lactate Lactate mmol/L 

18. Mg Serum Magnesium mmol/L 

19. MAP Invasive mean arterial blood pressure mmHg 

20. MechVent Mechanical Respiration Ventilation 0/1(true/false) 

21. Na Serum Sodium mEq/L 

22. NIDiasABP Non-invasive diastolic arterial blood pressure mmHg 

23. NIMAP Non-invasive mean arterial blood pressure mmHg 

24. NISysABP Non-invasive systolic arterial blood pressure mmHg 

25. PaCO2 Partial pressure of arterial carbon dioxide mmHg 

26. PaO2 Partial pressure of arterial oxygen mmHg 

27. pH Arterial pH [0-14] 

28. Platelets Platelets cells/nL 

29. RespRate Respiration Rate bpm 

30. SaO2 O2 saturation in haemoglobin % 

31. SysABP Invasive systolic arterial blood pressure mmHg 

32. Temp Temperature C 

33. TropI Troponin-I µg/L 

34. TropT Troponin-T µg/L 

35. Urine Urine Output ml 

36. WBC White Blood Cells Count cells/nL 
 

The women in data science (WiDS) datathon 2020 

providesa challenge to the participants (especially 

women's) to develop new machine learning models 

for the prediction of mortality of ICU patients. The 

WiDS datathon intends to motivate women's from 

all over the world to look into data science. The test 

is to make a model that utilizes information from 

the initial 24 hours of intensive care unit to 

predictpatient'smortality. MIT's Global Open 

Source Severity of Illness Score (GOSSIS) 

alongside the Harvard Privacy Lab, has gathered 

the information from various patients of ICU, 

visiting 1,30,000 clinics during one year 
8
. The 

WiDS dataset consists of 91,713 patient's data with 

total 188 features and one target variable 

"hospital_death" which comprises of two binary 

values 0 and 1 to predict whether the patient will 

alive or deceased in the hospital. The features are 

the demographic, vital signs, APACHE covariate, 

lab blood gas, comorbidity, APACHE prediction 

and other related information. In this study, sets A, 

B and Ctogether of Physionetand WiDSdatathon 

2020 datasets are used for training and as well as 

for testing using 5 fold cross validation. Both the 

datasets are challenging as they have high 

dimension, imbalanced data and variables with a 

synchronization of time 
4
. In both the datasets, 

some features have more than 50% missing data, 

which need to be handled carefully. Table 2 shows 

the missing value percentage of time series 

variables in sets A, B and C of Physionet data and 

Table 3 tabulates the missing value percentage in 

physiological parameters of WiDSdatathon. 
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TABLE 2: MISSING VALUE PERCENTAGE OF TIME SERIES VARIABLES OF SETS (A,B,C)IN PHYSIONET 

DATASET 

Physiological parameters Missing value (%) Physiological parameters Missing value (%) 

Record ID 0.0 pH 24.1 

Age 0.0 PaCO2 24.5 

ICU Type 0.0 PaO2 24.6 

target 0.0 MAP 30.0 

BUN 1.5 SysABP 30.2 

Creatinine 1.5 DiasABP 30.2 

HR 1.5 FiO2 32.4 

GCS 1.5 MechVent 36.8 

Temp 1.5 Gender 43.9 

HCT 1.6 Lactate 45.2 

Platelets 1.7 Height 47.7 

HCO3 1.7 SaO2 55.3 

Na 1.8 AST 56.6 

WBC 1.8 ALT 56.6 

K 2.1 Bilirubin 56.6 

Mg 2.4 ALP 57.5 

Glucose 2.5 Albumin 59.4 

Urine 2.8 RespRate 72.3 

Weight 7.6 TroponinT 78.0 

NISysABP 12.7 Cholesterol 92.1 

NIDiasABP 12.8 TroponinI 95.3 

NIMAP 12.8   

TABLE 3: MISSING VALUE PERCENTAGE OF PHYSIOLOGICAL PARAMETERS IN WIDSDATATHON 2020 

DATASET 

Physiological 

parameters 

Missing 

value 

(%) 

Physiological 

parameters 

Missing 

value 

(%) 

Physiological 

parameters 

Missing 

value 

(%) 

Physiologica

l parameters 

Missing 

value 

(%) 

hospital_id 0.0 d1_diasbp_no

ninvasive_min 

1.1 h1_temp_max 23.7 h1_hco3_mi

n 

83.0 

hospital_death 0.0 d1_heartrate_

max 

0.2 h1_temp_min 23.7 h1_hemaglob

in_max 

79.7 

age 4.6 d1_heartrate_

min 

0.2 d1_albumin_max 53.5 h1_hemaglob

in_min 

79.7 

bmi 3.7 d1_mbp_invas

ive_max 

73.9 d1_albumin_min 53.5 h1_hematocr

it_max 

80.1 

elective_surge

ry 

0.0 d1_mbp_invas

ive_min 

73.9 d1_bilirubin_ma

x 

58.5 h1_hematocr

it_min 

80.1 

ethnicity 0.0 d1_mbp_max 0.2 d1_bilirubin_min 58.5 h1_inr_max 63.2 

gender 0.0 d1_mbp_min 0.2 d1_bun_max 11.5 h1_inr_min 63.2 

height 1.5 d1_mbp_nonin

vasive_max 

1.6 d1_bun_min 11.5 h1_lactate_m

ax 

92.0 

icu_type 0.0 d1_mbp_nonin

vasive_min 

1.6 d1_calcium_max 14.2 h1_lactate_m

in 

92.0 

pre_icu_los_d

ays 

0.0 d1_resprate_m

ax 

0.4 d1_calcium_min 14.2 h1_platelets_

max 

82.5 

readmission_st

atus 

0.0 d1_resprate_m

in 

0.4 d1_creatinine_m

ax 

11.1 h1_platelets_

min 

82.5 

weight 3.0 d1_spo2_max 0.4 d1_creatinine_mi

n 

11.1 h1_potassiu

m_max 

78.6 

albumin_apac

he 

59.3 d1_spo2_min 0.4 d1_glucose_max 6.3 h1_potassiu

m_min 

78.6 

apache_2_diag

nosis 

1.8 d1_sysbp_inva

sive_max 

74.1 d1_glucose_min 6.3 h1_sodium_

max 

79.2 

apache_3j_dia

gnosis 

1.2 d1_sysbp_inva

sive_min 

74.1 d1_hco3_max 16.4 h1_sodium_

min 

79.2 

apache_post_o 0.0 d1_sysbp_max 0.2 d1_hco3_min 16.4 h1_wbc_max 82.8 
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perative 

arf_apache 0.8 d1_sysbp_min 0.2 d1_hemaglobin_

max 

13.2 h1_wbc_min 82.8 

bilirubin_apac

he 

63.4 d1_sysbp_noni

nvasive_max 

1.1 d1_hemaglobin_

min 

13.2 d1_arterial_p

co2_max 

64.6 

bun_apache 21.0 d1_sysbp_noni

nvasive_min 

1.1 d1_hematocrit_

max 

12.7 d1_arterial_p

co2_min 

64.6 

creatinine_apa

che 

20.6 d1_temp_max 2.5 d1_hematocrit_

min 

12.7 d1_arterial_p

h_max 

65.6 

fio2_apache 77.3 d1_temp_min 2.5 d1_inr_max 63.2 d1_arterial_p

h_min 

65.6 

gcs_eyes_apac

he 

2.1 h1_diasbp_inv

asive_max 

81.7 d1_inr_min 63.2 d1_arterial_p

o2_max 

64.6 

gcs_motor_ap

ache 

2.1 h1_diasbp_inv

asive_min 

81.7 d1_lactate_max 74.6 d1_arterial_p

o2_min 

64.6 

gcs_unable_ap

ache 

1.1 h1_diasbp_ma

x 

3.9 d1_lactate_min 74.6 d1_pao2fio2r

atio_max 

72.0 

gcs_verbal_ap

ache 

2.1 h1_diasbp_mi

n 

3.9 d1_platelets_ma

x 

14.7 d1_pao2fio2r

atio_min 

72.0 

glucose_apach

e 

12.0 h1_diasbp_no

ninvasive_max 

8.0 d1_platelets_min 14.7 h1_arterial_p

co2_max 

82.8 

heart_rate_apa

che 

1.0 h1_diasbp_no

ninvasive_min 

8.0 d1_potassium_m

ax 

10.5 h1_arterial_p

co2_min 

82.8 

hematocrit_ap

ache 

21.7 h1_heartrate_

max 

3.0 d1_potassium_m

in 

10.5 h1_arterial_p

h_max 

83.3 

intubated_apac

he 

0.8 h1_heartrate_

min 

3.0 d1_sodium_max 11.1 h1_arterial_p

h_min 

83.3 

map_apache 1.1 h1_mbp_invas

ive_max 

81.6 d1_sodium_min 11.1 h1_arterial_p

o2_max 

82.8 

paco2_apache 77.3 h1_mbp_invas

ive_min 

81.6 d1_wbc_max 14.4 h1_arterial_p

o2_min 

82.8 

paco2_for_ph_

apache 

77.3 h1_mbp_max 5.1 d1_wbc_min 14.4 h1_pao2fio2r

atio_max 

87.4 

pao2_apache 77.3 h1_mbp_min 5.1 h1_albumin_max 91.4 h1_pao2fio2r

atio_min 

87.4 

ph_apache 77.3 h1_mbp_nonin

vasive_max 

9.9 h1_albumin_min 91.4 apache_4a_h

ospital_death

_prob 

8.7 

resprate_apach

e 

1.3 h1_mbp_nonin

vasive_min 

9.9 h1_bilirubin_ma

x 

92.3 apache_4a_ic

u_death_pro

b 

8.7 

sodium_apach

e 

20.3 h1_resprate_m

ax 

4.8 h1_bilirubin_min 92.3 aids 0.8 

temp_apache 4.5 h1_resprate_m

in 

4.8 h1_bun_max 81.9 cirrhosis 0.8 

urineoutput_ap

ache 

53.4 h1_spo2_max 4.6 h1_bun_min 81.9 diabetes_mel

litus 

0.8 

ventilated_apa

che 

0.8 h1_spo2_min 4.6 h1_calcium_max 82.7 hepatic_failu

re 

0.8 

wbc_apache 24.0 h1_sysbp_inva

sive_max 

81.7 h1_calcium_min 82.7 immunosupp

ression 

0.8 

d1_diasbp_inv

asive_max 

74.1 h1_sysbp_inva

sive_min 

81.7 h1_creatinine_m

ax 

81.7 leukemia 0.8 

d1_diasbp_inv

asive_min 

74.1 h1_sysbp_max 3.9 h1_creatinine_mi

n 

81.7 lymphoma 0.8 

d1_diasbp_ma

x 

0.2 h1_sysbp_min 3.9 h1_glucose_max 57.4 solid_tumor_

with_metasta

sis 

0.8 

d1_diasbp_mi

n 

0.2 h1_sysbp_noni

nvasive_max 

8.0 h1_glucose_min 57.4   
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d1_diasbp_no

ninvasive_max 

1.1 h1_sysbp_noni

nvasive_min 

8.0 h1_hco3_max 83.0   

 

The following section discusses the pre-processing 

techniques used to deal with the missing data, 

imbalance and scaling of data. 

Pre-processing of Data: Original raw data in 

Physionetare available in the comma-separated text 

file format. Each patient's information is recorded 

in an individual text file. Each text file consists of 

multiple observations which have been recorded 

numerous times. For example, the Temperature 

(C°) of a particular patient is taken 5 times, so five 

values are recorded. The problem is how to select 

one value out of these five. Hence, the mean value 

of temperature is calculated and stored. The same 

process is repeated for all other variables. Table 4 

presents an example of the variable temperature. 

TABLE 4: EXAMPLE OF MEAN VALUE FOR THE 

VARIABLE TEMPERATURE 

Temperature (C)  

35.2 Mean value of 

Temperature is 34.88 35.1 

34.8 

34.5 

34.8 

In the same way, all individual text files are 

converted into comma-separated values in an excel 

file by calculating the mean value of each feature. 

The WiDSdatathon is available in. csv file format. 

Handling Missing Values: Physionet and 

WiDSdatathon datasets have many missing values. 

These missing values can cause problems and may 

lead to poor performances. Hence, there is a need 

to identify the missing values and replace them 

with numeric ones, also known as missing value 

imputation. One of the popular methods for data 

imputation is the k-NN imputation algorithm 
47

 is 

used in Physionet. The idea behind the k-NN 

imputation algorithm is to recognize 'k' examples in 

the dataset that are comparative or nearer in the 

space. Then, these 'k' examples are used to estimate 

the missing information of data points. The mean 

value of the k-points is imputed in each example's 

missing values. The distance measure used in the 

calculation is Euclidean distance. In case of 

WiDSdatathon the missing values are filled using 

mean imputation as k-NN imputation is very time 

consuming in this case. 

Class Balancing: Class imbalance is a problem 

where instances of one class are not equal to other 

classes in the dataset. In the present study, there are 

two types of classes: majority class (negative class) 

and minority class (positive class). The ratio 

between more significant part (majority class) and 

minor (minority class) indicates the class imbalance 

ratio. During the model's training, data input should 

be distributed, i.e. minority and majority classe 

instances should be equal. The problem with the 

imbalanced dataset is the biasness towards the 

negative class (majority class) of the dataset and try 

to neglect minority class, hence degradation in the 

performance of standard machine learning models 
53

. In Physionet dataset, 10,293 (survived patient's) 

and 1,707 (death patients) and in WiDSdatathon 

83,798 (survived patients) and 7,915 (died 

patient's) are there. 

Balancing of imbalanced data can be done using 

various under sampling and oversampling 

techniques. In this study, Synthetic Minority 

Oversampling Technique (SMOTE), Cost-Sensitive 

Learning (CSL) and generative adversarial network 

(GAN) are used to balance the datasets, as they are 

the most widely used effective methods for 

balancing. The advance version of oversampling 

technique is the SMOTE. It generates the synthetic 

data points from the minority class. Its main 

advantage is that in place of generating duplicate 

data points, it creates synthetic data points which 

improves the performance. CSL minimizes the 

misclassification (false negative) costs and GAN 

generates the similar data as the original one. All 

these sampling techniques are explained briefly in 

the next section.  

Synthetic Minority Oversampling Techniques 

(SMOTE): The SMOTE 
48 

is widely used in 

different applications and performs better than the 

other oversampling techniques. It is one of the 

oversampling techniques which generates samples 

from the minority class, artificially. Its primary 

concept is, framing a new minority class sample by 

adding a few minority class samples that work 

together. For each minority sample, k number 

(taken k=5) of closest neighbors of a similar class 

is determined. Then, a few tuples are randomly 
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chosen from them as indicated by the oversampling 

rate. After it, new artificial tuples are produced 

along with the line in the middle of the minority 

samples and their closest neighbors are chosen. In 

this manner, the over fitting issue is mitigated.  

It causes the limits of the decision for the minority 

class to increase further into the more significant 

part of the class region 
54

. The algorithm of 

SMOTE used in the simulation is given below: 

 

Cost Sensitive Learning (CSL): Cost sensitive 

learning (CSL) 
49 

method is used for balancing the 

data using weighted cost function. Subsequently, 

misclassifying an example from the smaller class 

distribution (minority class) will cost the classifiers 

more than misclassifying an example from the 

larger class distribution (majority class). 

Minimizing total cost is the main aim of CSL and 

ignore the various false negative (misclassification) 

errors. Most of the sklearn classifiers used class 

weight as 'balanced'. In the prediction of mortality 

of ICU patients, afalse negative is of high cost than 

a false positive since the patient can die because of 

postponed treatment occasioned by the 

misclassification. 

Generative Adversarial Network (GAN): GAN 
50 

is a type of machine learning framework which 

contains two models i.e. generator and 

discriminator. It is based on two neural networks. 

The generator is liable for producing new examples 

from the space (domain), and the discriminator is 

liable for characterizing whether generated 

examples are genuine or fake. The center thought 

of a GAN depends on the 'indirect' preparing 

through the discriminator, another neural network 

that can see how muchan information is 'realistic' 
55

. This essentially implies that the generator isn't 

prepared (trained) to limit the distance to a 

particular data, yet rather it try to fool the 

discriminator. The working of GAN model is that 

first input is passed to the generator model which 

generates the fake data and some training examples 

are taken from the real data. Both generated data 

and selected examples are then passes to the 

discriminator model which predicts whether the 

data is fake or real based on the probability. The 

probability of fake data should be near to 0 and real 

data should be near to 1. When the output of both 

the data is differ than 0 or 1, there is a need of 

updating the weight by using back propagation 

algorithm. It back propagates and trained the 

discriminator model and updates the weights. In the 

same way generator model is also back propagates 

and updates the weights to obtain the real data. The 

process will continue until the generator and 

discriminator performs better after every iteration 

and obtains the real data. 

After balancing the data, there is a need to scaled 

the data between 0 and 1, so the machine can learn 

and perform easily. 

Normalization of Data: Normalization is the 

process of scaling the data to a specified range as 

required. All information in the dataset is in various 

ranges. The min-max algorithm is used to transfer 

the data to a range of 0-1 using (1). 

Xnormalized
 = (

X-Xmin
) / (

Xmax-Xmin
) × (

XnewmaxXnewmin
) + 

(
Xnewmin

)
……..(1) 

Where, Xnormalized represents the output of the 

normalization, X is the original input value, Xmin is 

the input X's minimum value and Xmax is the 
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maximum value of the input X 
51

. Xnewmin and 

Xnewmax are new minimum and maximum range 

respectively.  

Feature Extraction: After normalizing the data, 

discrete wavelet transform (DWT) 
51

, a transform 

domain technique is used in the WiDSdatathon 

2020 dataset to extract features which obtains 

wavelet coefficients. The DWT decays the signals 

or information's, and in each degree of decays the 

energy of various frequencies and time is 

connected with a particular coefficient. The signal 

coefficients having huge energy are chosen and 

those having less level of energy are disposed off. 

In the WiDS dataset, three levels of DWT are 

applied on 176 features to extract 22 wavelet 

coefficients. The main advantage of using DWT is 

faster processing as comparison to other feature 

extraction techniques as it splits the data into half 

of the entire size repeatedly and hence reduced the 

dimension of the features. Also, the performances 

of the models are improved and requires less time 

in execution. In case of Physionet all 40 features 

are used in simulation without using DWT. 

Development of Classifier Models:  Deep 

learning is the state-of-the-art and branch of 

machine learning, which is motivated by the 

biological structure of neurons known as artificial 

neurons. It consists of many layers and handles 

large and complex data sets. The DNN, DLSTM, 

DBLSTM and DGRU models are proposed in this 

study to predict ICU patient's mortality. The 

explanation of the models are given as follows: 

Deep Neural Network (DNN): A simple DNN
12

 is 

made up of three layers – (1) input layer (which 

receives input), (2) hidden layers (used for 

extracting the patterns) and (3) output layer (which 

generates the output). A network with many hidden 

layers is known as a deep neural network. 

In this study, the DNN model consists of 4 hidden 

layers. There are 60, 50, 50 and 40 neurons in the 

first to fourth layers, respectively. The input layer 

focuses on passing the input to the first hidden 

layer. Then the first hidden layer computes the 

weighted sum and passes it through the rectified 

linear unit (ReLu) activation function to the second 

layer. The same process is repeated for all the rest 

hidden layers. The last layer is the output layer, 

which predicts the output (whether the patients will 

survive (0) or die (1) in the hospital). The 

activation function in the output layer is the 

'sigmoid' used for binary classification. The 

stochastic gradient descent algorithm is used with 

momentum for updating the weights. Fig. 2 shows 

the proposed deep neural network architecture for 

mortality prediction. 

 
FIG. 2: PROPOSED ARCHITECTURE OF DEEP LEARNING MODELS FOR MORTALITY PREDICTION OF ICU 

PATIENTS 

The following equationis used in DNN for 

calculating the output: 

Z = b+w1 x1+w2 x2+⋯wn xn...... (2) 

Where, b = bias weight, w1.....wn = weights, n is the 

number of weights, x1.....xn = input, n is the number 

of inputs, Z = output.  

Deep Long-Short Term Memory (DLSTM): 

Long-short term memory (LSTM) 
13

 is an advance 

version of recurrent neural network (RNN) which 

is used to avoid vanishing gradient problems 

occurred during the RNN operation. The ability of 

LSTM is it remembers the information for long 

terms of time.  
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In LSTM, the data travels through a framework 

known as cell states. Thusly, LSTM can explicitly 

recall or forget to recollect things. The data at a 

particular cell state has three conditions. These 

three conditions are the past cell state (the data that 

was available in the memory after the past time 

step), past hidden state (this is equivalent to the 

result of the past cell) and the input of current time 

step (the new data is entered at that point). LSTM 

is made up of three gates i.e. input gate, forget gate 

and output gate. Input gate is used to refresh the 

cell state. For that, it passes the past hidden and 

current input state in the sigmoid activation 

function and decides which values will be refreshed 

by changing the qualities to be somewhere in the 

range of 0 and 1. Forget gate decides what data 

ought to be discarded or kept. Data from the past 

hidden state and current input state is passed using 

sigmoid activation function. Values emerge 

somewhere in the range of 0 and 1. Finally, the 

output gate takes decision of what should be the 

next hidden state. The LSTM architecture is shown 

in Fig. 3. In this study, the model is made up of six 

layers i.e. one input layer, four hidden layers 

(LSTM layer) and an output layer. 

 
FIG. 3: LSTM NEURON ARCHITECTURE

The following key equations show the working of a 

LSTM neuron architecture: 

Forget gate,  

fg = σa (Wfg×xt+Ufg × h (t-1)+bfg)...... (3) 

Input gate, 

ig = σa (Wig × xt+Uig × h (t-1)+big)...... (4) 

Output gate, 

og = σa (Wog×xt+Uog × h (t-1)+bog)...... (5) 

C'(t) = σh (Wct×xt+Uct × h (t-1)+bct) ...... (6) 

Cell state, 

C(t) = fg.C(t-1)+ig.C'(t)...... (7) 

Hidden state, 

h (t) = og.σ h (C(t) ...... (8) 

Where, fg = forgate gate,  

ig = input gate,  

og = output gate,  

C(t) = used to generate C(t) and h(t) 

C(t) = cell state,  

 h(t) = hidden state, 

Wfg, Wig, Wog, Ufg, Uig, Uog = weight matrices 

bfg
, 
big

, 
bog

, 
bct

 = bias
 

xt= input 

Deep Bidirectional Long-Short Term Memory 

(DBLSTM): In bidirectional LSTM 
14

, data flows 

in both the directions (forward or backward) to 

save the previous and the future data. The structure 

of bidirectional LSTM is same as LSTM 

(unidirectional) except that it is bidirectional. In 

this study, model is made up of one input layer, 

four hidden layer (DBLSTM) and one output layer. 

The model learns sequentially from both the 

previous and future values. The output of both the 

passes (forward and backward) are then combined 

to produce final results. The final layer is densely 

connected using sigmoid activation function which 

gives the output values between 0 and 1. Fig. 4 

shows the architecture of a BLSTM neuron. 



Majhi and Kashyap, IJPSR, 2023; Vol. 14(8): 4170-4192.                             E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              4183 

 
FIG. 4: BLSTM NEURON ARCHITECTURE 

The following key equations are used in BLSTM: 

Forward hidden layer, 

hf = tanh(Whf xt + Whf hf+bf)...... (9) 

Backward hidden layer, 

hb= tanh⁡(Whb xt + Whb hb+bb)...... (10) 

Output, 

yi = Whf.hf+Whb hb+by ...... (11) 

Where, hf = forward hidden layer, hb = backward 

hidden layer, yi = output of both the hidden layer hf 

and hb. 

Deep Gated Recurrent Unit (DGRU): The gated 

recurrent unit (GRU) 
15

 is a recurrent neural 

network architecture which is same as LSTM 

structure. The GRU mainly consists of two gates i.e 

reset gate and update gate in place of the input gate, 

output gate and the forget gate of the LSTM 

architecture. The reset gate decides how to join the 

new contribution with the past memory, and the 

update gate characterizes the amount of the past 

memory to keep around. Setting all 1's to reset gate 

and all 0's to update gate, it behaves like a recurrent 

neural network architecture. Gated recurrent unit is 

shown in the Fig. 5. 

In this study, DGRU based classifier is developed 

which consists of 6 layers i.e. one input layer, four 

hidden layers (DGRU layers) and one output layer. 

Here, the number of input is passed to the input 

layer and then the whole inputs passes to the first 

hidden layer where weighted sum is calculated and 

passes through the ReLU activation function to the 

next hidden layer. The process will repeat until it 

reaches to the last hidden GRU layer and generate 

output. The generated output is then passed to the 

last dense layer (output) which predicts whether the 

patients will alive or deceased. The final output is 

compared with the actual output which produces 

error. Error is minimized using back propagation 

algorithm.  

The advantages of using GRU is, it can be utilized 

for further developing the memory limit of 

recurrent neural network as well as it gives the 

simplicity/ease way of preparing a model. The 

hidden unit can likewise be utilized for settling the 

RNN's vanishing gradient problems. It tends to be 

utilized in different applications, including machine 

translation, speech signal processing, handwriting 

recognition etc. 

 
FIG. 5: GRU NEURON ARCHITECTURE 



Majhi and Kashyap, IJPSR, 2023; Vol. 14(8): 4170-4192.                             E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              4184 

The following key equations are used in GRU 

architecture: 

Reset gate,  

r(t) = σ(x(t)+U(r)+h(t-1)×W(r))...... (12) 

Update gate,  

u(t)=σ(x(t)+U(u)+h(t-1)×W(u))...... (13) 

Where, r(t) = reset gate, u(t) = update gate, U(r), 

U(u), W(r), W(u) = weight matrices, t= time, h(t-1) 

= hidden state. 

Dropout Layer: When testing accuracy is worse 

than the training accuracy, then this is known as the 

problem of over fitting. This problem is resolved 

using the dropout method. Dropout is a method 

used to prevent over fitting problems by dropping 

out the neurons in every hidden layer when training 

the model 
56

.  

It also reduces the sensitivity of each neuron. These 

neurons are ignored and assigned to zero value 

during the training stage, as shown in Fig. 6. The 

dropout rate used in this study is 0.05. 

 
FIG. 6: AN EXAMPLE OF DROPPED OUT NEURONS IN ALL DEEP LEARNING MODELS

Performance Measures: The different 

performance measures calculated during the testing 

of the models are discussed below: 

Confusion matrix: It is a two-dimensional table 

consisting of the actual and predicted category of 

classes as true positive (TP), true negative (TN), 

false positive (FP) and false negative (FN) 
24

. From 

this, other performance measures such as Log-Loss, 

AUC, precision, recall, specificity, sensitivity and 

accuracy are derived. 

TABLE 5: CONFUSION MATRIX 

 Actual Value 

Predicted 

Value 

 

 1 0 

1 TP FP 

0 FN TN 

Sensitivity (Se): It is also known as recall or true 

positive rate (TPR). It is the performance metrics 

used to evaluate the model's ability to predict truly 

positive class 
51

. 

Se = TP / (TP+FN)……… (14) 

Specificity (Sp): Similarly, it is used to evaluate 

the model's ability to predict truly negative class 
50

. 

Sp = TN / (TN+FP) ………(15) 

Precision (+P): It is also known as precision. The 

proportion of truly positive and overall positive is 

known as positive predictive value 
51

. 

+P = TP / (TP+FP) ……..(16) 

F1-score: It is the weighted average or function of 

precision (positive predictive value) and recall 

(sensitivity). Also it is a harmonic mean of 

precision (positive predictive value) and recall. The 

value of F1 is near to 1 is the best value 
51

. 

F1-score = 2* (Precision*Recall) / (Precision+Recall).....(17) 

Accuracy: It is the ratio of correctly predicted 

instances to overall testing instances 
51

. 
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Acc = (TP+TN) / (TP+FP+FN+TN)…….18) 

Area under Curve (AUC): It is the degree of the 

capacity of a classifier to differentiate among 

classes which is used as the representation of the 

receiver operating characteristics curve 
54

. 

ROC: It is an evaluation metric for classification 

models. It plots a graph between True Positive Rate 

(TPR) and False Positive Rate (FPR) 
51

. 

Score 1: The minimum value between the 

sensitivity and the positive predictive value 7. 

Score 1 = min (Se, +P).........(19) 

Simulation Study, Results and Discussion: 

Simulation Study: For mortality prediction of ICU 

patient's, four different deep neural network 

models, DNN, DLSTM, DBLSTM and DGRU are 

simulated, referring to Fig. 4 and 5 using python.  

The proposed models are implemented using 

Tensor flow 2.6 – an open-source library software 
57

, Keras – a high-level application programming 

interface of Tensorflow
58

 and Sk-learn (Scikit-

learn) – a tool for the data analysis 
59

.  

The proposed models are trained and tested using 5 

fold cross validation.  The models are made up of 

one input layer, four hidden layers with 

60,50,50,40 number of neurons and one output 

layer. To train the deep learning models using 

Physionet challenge 2012 and WiDS datathon 2020 

dataset, a value of forty features and twenty two 

features respectively are given as input to the 

models. It forwards the weighted input to the next 

hidden layers, and finally, the output is obtained at 

the output layer. The obtained output is then 

compared with the desired value to generate an 

error.  The back propagation algorithm is used to 

minimize the error and update the weights. Weight 

regularizer (L2) is used for weight updation. The 

change in weights is then calculated for every given 

input. This process completes one iteration.  

The same process is repeated for 90 iterations for 

all deep learning models. The learning rate is fixed 

at 0.001, as it gives better training performance 

after several trails. ReLu activation function is used 

in all hidden layers and 'sigmoid' activation 

function is used in the output layer. Kernel and bias 

initializer is set to default "glorot uniform" in the 

dense layers.  

"Adam" optimizer is used with default parameters 

(learning rate = 0.01) to compile the models. Loss 

function, 'binary crossentropy' is used. In the 

networks, layer dropout is set to 0.05. It means 5% 

of neurons are dropped out from the hidden layers, 

which helps improving the training performance 

and overcoming the overfitting problem.  

The same process is done for all the models only 

the working of model is different. Another 

hyperparameter return sequences = "True" is tuned 

for all models (DLSTM, DBLSTM and DGRU) 

except DNN. During cross validation of the 

models, using the hyperparameters as given in the 

Table 6 and 7, model performance measures are 

evaluated for both the datasets and exhibited in 

terms of mean and variance in Table 8-11.  

TABLE 6: HYPERPARAMETERS TUNED IN DNN AND DLSTM 

Hyperparameters Values used 

DNN DLSTM 

Quantity of layers 04 04 

Quantity of Neurons 60,50,50,40 60,50,50,40 

Kernel_initializer glorot_uniform - 

Kernal_regularize 0.01 - 

Learning Rate 0.01 0.01 

Momentum Rate 0.9 0.9 

Adaptive Learning Rate Method SGD SGD 

Activation function ReLU ReLU 

Optimizer adam adam 

Loss_function binary_crossentropy binary_crossentropy 

Epochs 90 90 

Batch_size 300(for Physionet data)/500 (for WiDS data) 300/500 

Dropout Rate 0.05 0.05 

Weight regularizer L2 L2 

Return sequences - True 
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TABLE 7: HYPERPARAMETERS TUNED IN DBLSTM AND DGRU 

Hyper parameters Values used 

DBLSTM DGRU 

Quantity of layers 04 04 

Quantity of Neurons 60,50,50,40 60,50,50,40 

Kernel_initializer - - 

Kernal_regularize - - 

Learning Rate 0.01 0.01 

Momentum Rate 0.9 0.9 

Adaptive Learning Rate Method SGD SGD 

Activation function ReLU ReLU 

Optimizer adam adam 

Loss_function binary_crossentropy binary_crossentropy 

Epochs 90 90 

Batch_size 300/500 300/500 

Dropout Rate 0.05 0.05 

Weight regularizer L2 L2 

Return sequences True True 

 

RESULTS AND DISCUSSION: The performance 

measures such as sensitivity, specificity, precision, 

F1_score, AUC and accuracy of DNN, DLSTM, 

DBLSTM and DGRU are obtained for Physionet 

challenge 2012 and presented in the Table 8 and 9. 

Results using Physionet Challenge 2012 Dataset: 

TABLE 8: PERFORMANCE MEASURES OF DNN AND LSTM WITH THREE DIFFERENT BALANCING 

TECHNIQUES (SMOTE, CSL AND GAN) 

Evaluation 

Criteria 

DNN DLSTM 

Testing results with 5 fold cross validation Testing results with 5 fold cross validation 

SMOTE+DNN 

(mean±variance) 

CSL+DNN 

(mean±variance) 

GAN+DNN 

(mean±variance) 

SMOTE+DLSTM 

(mean±variance) 

CSL+DLSTM 

(mean±variance) 

GAN+DLSTM 

(mean±variance) 

Sensitivity 

(Se) 

0.7790+0.0198 0.7685±0.0490 0.7675±0.0402 0.8280±0.0666 0.7577±0.0047 0.7922±0.0124 

Specificity 

(Sp) 

0.7435+0.0137 0.7510±0.0254 0.7412±0.0111 0.7765±0.0184 0.7325±0.0135 0.7877±0.0231 

Precision(+P) 0.7524+0.0094 0.7394±0.0136 0.7515±0.0025 0.7868±0.0197 0.7833±0.0142 0.7823±0.0112 

F1-Score 0.7654+0.0110 0.7402±0.0141 0.7622±0.0126 0.8060±0.0407 0.7434±0.0074 0.7727±0.0311 

Accuracy 

(Acc) 

0.7613+0.0096 0.7536±0.0166 0.7516±0.0135 0.8023± 0.0339 0.7627±0.0056 0.7913±0.0211 

AUC 0.7613+0.0096 0.7598±0.0161 0.7514±0.0082 0.8023±0.0335 0.7579±0.0020 0.7913±0.0210 

Score1 = 

min(Se, +P) 

0.7524+0.0094 0.7394±0.0136 0.7515±0.0025 0.7868±0.0197 0.7833±0.0142 0.7823±0.0112 

Run Time 

(in second) 

171.1885 116.6315 266.7523 24608.2676 22125.2896 22405.2122 

TABLE 9: PERFORMANCE MEASURES OF BLSTM AND GRU WITH THREE DIFFERENT BALANCING 

TECHNIQUES (SMOTE, CSL AND GAN) 

Evaluation 

Criteria 

DBLSTM DGRU 

Testing results with 5 fold cross validation Testing results with 5 fold cross validation 

SMOTE+DBLSTM 

(mean±variance) 

CSL+DBLSTM 

(mean±variance) 

GAN+DBLSTM 

(mean±variance) 

SMOTE+DGRU 

(mean±variance) 

CSL+DGRU 

(mean±variance) 

GAN+DGRU 

(mean±variance) 

Sensitivity 

(Se) 

0.8089±0.0807 0.7608 ± 0.0078 0.7292± 0.0047 0.7759±0.1196 0.763 ± 0.0021 0.7872±0.0881 

Specificity 

(Sp) 

0.7877±0.4812 0.7680± 0.0130 0.7804± 0.0077 0.8404±0.0283 0.759 ± 0.0041 0.6881± 0.2420 

Precision 

(+P) 

0.7939±0.0284 0.7552 ± 0.0090 0.6775± 0.0115 0.8296±0.0106 0.766 ± 0.0023 0.8852±0.0752 

F1-Score 0.7986±0.0403 0.7615 ± 0.0082 0.7532± 0.0053 0.7964±0.0720 0.760 ± 0.0020 0.7701±0.1201 

Accuracy 

(Acc) 

0.7983±0.0295 0.7609±0.0000 0.7133 ± 0.0065 0.8081±0.0476 0.763 ± 0.0014 0.8121± 0.0472 
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AUC 0.7983±0.0319 0.7609±0.0000 0.7289±0.0000 0.8081±0.0455 0.7621±0.0100 0.7871±0.0020 

Score1 = 

min(Se, +P) 

0.7939±0.0284 0.7552 ± 0.0090 0.6775± 0.0115 0.7759±0.1196 0.7630±0.0021 0.7870±0.0882 

Run Time (in 

second) 

32418.9047 22188.04459 25110.4225 16134.8110 11470.03846 13445.9614 

 

From the above tables, it is exhibited that SMOTE 

+DNN, SMOTE+DLSTM, SMOTE+BDLSTM and 

SMOTE+DGRU have obtained better AUC results 

as compared to other deep learning models 

simulated. The performances are measured using 

same number of layers, neurons and epochs with 5 

fold cross validation and runs 10 times 

independently. Mean and variance of all 

performance measure values are taken as final 

value after 10 independent runs. In DNN using 

physionet challenge 2012 dataset, SMOTE+DNN 

achieves AUC, F1-score and accuracy of 

0.7613±0.0096 (mean± variance), 0.7654±0.0110 

and 0.7613±0.0096 respectively in 90epochs using 

four hidden layers with 60,50,50,40 neurons 

respectively and performs better in comparison 

with other models (i.e. CSL+DNN, GAN+DNN). 

Further, the SMOTE+DLSTM results AUC, F1-

score and accuracy of 0.8023±0.0335, 

0.8060±0.0407 and 0.8023±0.0339 respectively in 

same epochs using same hidden layers and 

performs better in comparison with models (i.e. 

CSL+DLSTM, GAN+DLSTM). Similarly, 

SMOTE+DBLSTM gives AUC, F1-score and 

accuracy of 0.7983±0.0319, 0.7986±0.0403 and 

0.7983±0.0295 respectively in same epochs in 

comparison with models (i.e. CSL+DBLSTM, 

GAN+DBLSTM). In the same way, SMOTE+ 

DGRU has resulted the best AUC, F1-score and 

accuracy values of 0.8081±0.0455, 0.7964±0.0720 

and 0.8081±0.0476 respectively. Also, after overall 

analysis of results on physionet dataset, it is 

observed that SMOTE+DGRU model outperforms 

other deep learning models. The ROC curves for all 

the models that perform best are graphically 

presented in Fig. 6 and 7. 

Results using WiDSdatathon 2020: 

TABLE 10: PERFORMANCE MEASURES OF DNN AND LSTM MODELS WITH THREE DIFFERENT 

BALANCING TECHNIQUES (SMOTE, CSL AND GAN) 

Evaluation 

Criteria 

DNN DLSTM 

Testing results with 5 fold cross validation Testing results with 5 fold cross validation 

SMOTE+DNN 

(mean±variance) 

CSL+DNN 

(mean±variance) 

GAN+DNN 

(mean±variance) 

SMOTE+DLSTM 

(mean±variance) 

CSL+DLSTM 

(mean±variance) 

GAN+DLSTM 

(mean±variance) 

Sensitivity 

(Se) 

0.7600±0.0153 0.7795±0.0004 0.7425±0.0111 0.8046±0.0724 0.7826±0.0624 0.7924±0.0232 

Specificity 

(Sp) 

0.7292±0.0345 0.7380±0.0117 0.7212±0.0124 0.7516± 0.0757 0.7641±0.0421 0.7624±0.0252 

Precision (+P) 0.7382±0.0212 0.7444±0.0028 0.7311±0.0215 0.7694±0.0398 0.7656±0.0411 0.7700±0.0032 

F1-Score 0.7486±0.0084 0.7505±0.0025 0.7352±0.0021 0.7829±0.0171 0.7563±0.0141 0.7752±0.0012 

Accuracy 

(Acc) 

0.7446±0.0126 0.7588±0.0057 0.7433±0.0122 0.7781±0.0118 0.7639±0.0211 0.7821±0.0023 

AUC 0.7446±0.0126 0.7587±0.0057 0.7533±0.0122 0.7781±0.0118 0.7639±0.0211 0.7821±0.0023 

Run Time 

(in second) 

757.9428 638.5263 622.4342 34981.0849 32521.5234 31125.2426 

TABLE 11: PERFORMANCE MEASURES OF DBLSTM AND DGRU MODELS WITH THREE DIFFERENT 

BALANCING TECHNIQUES (SMOTE, CSL AND GAN) 

Evaluation 

Criteria 

DBLSTM DGRU 

Testing results with 5 fold cross validation Testing results with 5 fold cross validation 

SMOTE+DBLSTM 

(mean±variance) 

CSL+DBLSTM 

(mean±variance) 

GAN+DBLSTM 

(mean±variance) 

SMOTE+DGRU 

(mean±variance) 

CSL+DGRU 

(mean±variance) 

GAN+DGRU 

(mean±variance) 

Sensitivity 

(Se) 

0.8873± 0.0439 0.7958±0.0152 0.8192±0.0411 0.8786±0.0528 0.7882±0.0312 0.8268±0.0142 

Specificity 

(Sp) 

0.8575± 0.0353 0.7825±0.0210 0.7964±0.0312 0.8590±0.0235 0.7721±0.0212 0.8022±0.0031 

Precision 

(+P) 

0.8629± 0.0266 0.7846±0.0200 0.8061±0.0221 0.8625±0.0142 0.7613±0.0112 0.8156±0.0312 



Majhi and Kashyap, IJPSR, 2023; Vol. 14(8): 4170-4192.                             E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              4188 

F1-Score 0.8739± 0.0215 0.7796±0.0154 0.7914±0.0310 0.8693±0.0239 0.7711±0.0231 0.8042±0.0021 

Accuracy 

(Acc) 

0.8724± 0.0199 0.7964±0.0162 0.8091±0.0211 0.8689±0.0190 0.7865±0.0221 0.8278±0.0131 

AUC 0.8724± 0.0199 0.7964±0.0162 0.8091±0.0211 0.8689±0.0190 0.7865±0.0221 0.8278±0.0131 

Run Time (in 

second) 

131687.2815 125631.2254 122314.6623 41645.9075 39625.8170 35361.4526 

 

Similarly, from the above tables, it is demonstrated 

that CSL+DNN, GAN+DLSTM, SMOTE+ 

DBLSTM and SMOTE+DGRU have yield better 

AUC, F1-score and accuracy  as compared to other 

deep learning models in case of WiDsdatathon. The 

performances are measured using same number of 

layers, neurons and epochs.  

In case of DNN, CSL+DNN achieves AUC, F1-

score and accuracy of 0.7587±0.0057 

(mean±variance), 0.7505±0.0025 and 0.7588± 

0.0057 respectively and performs better in 

comparison with other models (i.e. SMOTE+DNN, 

GAN+DNN). Further, the GAN+DLSTM results 

AUC, F1-score and accuracy of 0.7821±0.0023, 

0.7752±0.0012 and 0.7821±0.0023 respectively in 

comparison to other models (i.e. SMOTE+DLSTM, 

CSL+DLSTM). Similarly, SMOTE+DBLSTM 

achieves better AUC of 0.8724± 0.0199, 

0.839±0.0215 and 0.8724±0.0199 respectively in 

comparison with other models (i.e. 

CSL+DBLSTM, GAN+ DBLSTM).  

In the same way, SMOTE+DGRU has obtained the 

AUC, F1-score and accuracy values of 

0.8689±0.0190, 0.8693±0.0239 and 0.8689±0.0190 

respectively. Also, after overall analysis of results 

on WiDSdatathon 2020 dataset, it is observed that 

SMOTE+DBLSTM model outperforms other deep 

learning models. The ROC curves for all the 

proposed deep learning models are graphically 

presented in Fig. 7 and 8. 

   

  
FIG. 7: ROC CURVES FOR DEEP LEARNING MODELS (DNN, DLSTM, DBLSTM AND DGRU) WITH THREE 

BALANCING TECHNIQUES (SMOTE, CSL AND GAN) AND PHYSIONET CHALLENGE 2012 DATASET 

From the above ROC figures, it is observed that 

(SMOTE+DNN), (SMOTE+DLSTM), (SMOTE+ 

DBLSTM) and (SMOTE+DGRU) perform better 

as compared to other models.  

The (SMOTE+DLSTM) and (SMOTE+DGRU), 

both perform best with AUC of 80% in case of 

physionet data. 
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FIG. 8: ROC CURVES FOR DEEP LEARNING MODELS (DNN, DLSTM, DBLSTM AND DGRU) WITH THREE 

BALANCING TECHNIQUES (SMOTE, CSL AND GAN) AND WIDSDATATHON 2020 DATASET 

From the above figures, it is clear that 

(CSL+DNN), (GAN+DLSTM), (SMOTE+ 

DBLSTM) and (SMOTE+DGRU) perform better 

as compared to another models. In overall 

SMOTE+DBLSTM is performing best with AUC 

of 87% in case of WiDSdatathon. 

Comparison with the Previous Existing Models: 
The results of the proposed deep learning models in 

terms of AUC are compared with some previous 

existing results of the physionet challenge 2012 and 

given in Table 11.  

Among all the reported developed models of past, 
15 

has obtained the best AUC score of 86% and 
22

 

has claimed the best score 1 of 81%. The proposed 

models enhances the performance of AUC and 

obtained superior results. 

TABLE 12: COMPARISON OF AUC VALUES OBTAINED BY PROPOSED MODELS WITH EXISTING MODELS 

FOR PHYSIONET DATA 

Authors Models Set A only 

AUC (in %) 

Monteiro et al.
4
 Random Forest - 

Ma et al.
21

 One class JITL 85.10 

Liu et al. 
3
 MCSPCA+CPSO+SVM 77.18 

Zhenging et al.
23

 GRU-D 83.70 

Ding et al.
24

 JITL-ELM 85.68 

Bhattacharya et al. 
25

 CHISQ-NEW 86.70 

Karmakar et al.
26

 Multi-Task Transfer Learning - 

Xu et al.
27

 SVM - 

Chen et al. 
28

 Multilayer Neural Network - 

Johnson et al. 
29

 Regularized Logistic Regression 84.80 

Proposed methodology  (mean±variance) 

Using Physionet 2012 dataset (A,B,C sets) SMOTE+DGRU 80.81 

 

CONCLUSION: Physionet challenge 2012 and 

WiDSdatathon2020 datasets have provided 

challenge for developing new machine learning 

models to predict mortality of ICU patients. In this 
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study, four deep learning models DNN, DLSTM, 

DBLSTM and DGRU have been proposed for 

predicting ICU patient's mortality in the hospital. 

The simulation is done using python programming 

with different machine learning and deep learning 

packages. Tensor flow and Keras are used for the 

deep learning models. In this study, simulation is 

done using (set A, B and C together) Physionet and 

WiDS datasets. The simulation study depicts that 

the proposed models enhance the performances and 

achieve good results. Out of the four proposed 

models, SMOTE+DGRU performs bestin 

comparison with other models in Physionet 

challenge 2012with AUC, F1-score and accuracy 

of 0.8081, 0.7964 and 0.8081 respectively. The 

SMOTE+DBLSTM performs best in comparison 

with other models in WiDSdatathon 2020 with 

AUC, F1-score and accuracy of 0.8724, 0.839 and 

0.8724 respectively. Still, it is a challenging 

problem because of imbalance and enormous 

amounts of missing data in both the datasets. In the 

future, authors will focus on solving the problem 

using other deep learning and machine learning 

techniques for the same, and will try to improve the 

AUC. Also swarm intelligence algorithms can be 

used to optimize parameters of proposed deep 

learning models. An IOT based system can also be 

designed for this purpose in future work. 
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