ASSESSMENT AND QUALITY BASIL (OCIMUM BASILICUM) GENETIC VARIABILITY AND VIRAL DISEASE IN LAKHIMPUR, UTTAR PRADESH, INDIA
HTML Full TextASSESSMENT AND QUALITY BASIL (OCIMUM BASILICUM) GENETIC VARIABILITY AND VIRAL DISEASE IN LAKHIMPUR, UTTAR PRADESH, INDIA
H.C. Srivastava, Pankaj Shukla, Ajay Singh Maurya and Sonia Tripathi*
Research lab, D.B.S. College (R.L.D.B.S.C.) Kanpur-208006, Uttar Pradesh, India
ABSTRACT: The study aims at assessing Basil’s genetic phenotypic variability and viral disease incidence in India for sustainable pathological interventions. Basil (Ocimum basilicum) is important for its medicinal and nutritive value. It is highly adaptable as a potential crop in the tropics and could therefore enhance the food security of India nations. Germplasm seed evaluation and characterization was therefore carried out from the Research lab, D.B.S. College (R.L.D.B.S.C.) & F.F.D.C. seed collection survey to expand F.F.D.C. basil genetic base. The field layout was completely randomized design with five replications. The treatments were: O. basilicum, O. gratissimum and the local basil. Treatments were randomly allocated per replication. There were significant phenotypic differences in the O. basilicum variety. These differences were observed in the plant coloration ranging from deep to light purple coloration of stem, leaf, leaf vein and petiole. Our observations also revealed for the first time significant tolerance to Venial Mottle Mosaic Virus (VMMV) in the purple colored compared to the green O. basilicum in the early stages of growth till 50% anthesis. This is the first report of this observation in the India. Tolerance to VMMV symptoms increased significantly (LSD 5%) with purplish coloration. We concluded that inducement of purplish coloration in Basil through breeding might improve tolerance to VMMV and thereby increase market value of Basil with sustainable pathological interventions.
Keywords: |
Basil, Quality, Variety, Variability, Virus Disease
INTRODUCTION: Basil is an important crop world over particularly in Lakhimpur forest (U.P.) India for food security, medicinal and traditional usage. It is processed for soup making, food additives and ground in warm water to cure diseases like stomach aches. Basil plants are widely used in traditional medicine, cosmetics and as flavoring for foods 1, 2, 3, 4, 5, 6.
Influence of the sweet basil, Ocimum basilicum L. on some predacious mites of the family Phytoseiidae (Acari: Phytoseiidae) recorded the highest mortality when compared to other insecticides 13. This is of special importance with respect to the current shift from conventional to bio degradable organic Insecticide usage. Essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidalfumigant and powder at a dose of 400: L control completely Callosobruchus maculatus 7. This phenomenon is regarded more sustainable worldwide 8. They cause heavy yield losses are transmitted to other new crops through infected crop parts, and their control in the field during the growing season are either inefficient or impossible. The use of virus free seeds (enabled through specialized virus 0 prevention schemes) in the industrialized countries have decreased the effectiveness of infection, but has not eliminated the importance of the infection as re-infections do frequently occur. New virus problems do occur.
It appears the only solution is in developing resistance in the species themselves. The optimal use of genetic resources in present and future breeding requires implementing strategies to conserve wild traits. To use these resources effectively it is necessary to study basil characteristics and diversity.
The development of anthocyanin could establish their usage as ornamental horticultural plants and as a potential anthocyanin source for breeders. Several self-pollinated generations of all purple plants could be successful in stabilizing anthocyanin expression controlled by dominant genes (9). Analysis of plant trait diversity is very useful for germplasm curator as it helps to define the variation structure, thus enabling the assessment of genetic erosion, potential exploration and site conservation priorities and promoting efficient germplasm collection, multiplication and preservation.
Moreover, these studies aid plant breeders in its utilization. In this sense the Basil species used in this study are potential sources of novel genes for Basil breeding as they show varied resistance to diseases and plant quality traits. Sweet basil (Ocimum basilicum)veinal mottle mosaic virus, which produces chlorotic spots and leaf deformation, caused by whitefly sp. In India has not been reported. The disease symptom spreads fast and could wipe entire plantation. Thus swift intervention strategies are paramount for future sustainability. This study therefore, aims at assessing Basil‘s genetic phenotypic variability and viral disease incidence in India for sustainable pathological interventions.
MATERIALS AND METHODS: The studies were carried out at the experimental research fields of R.L.D.B.S. & F.F.D.C., Lakhimpur (U.P.) and C.S.A. Kanpur in India. Lakhimpur (Katrniya forest ) is located on latitude 7º10!N and longitude 3º35!E, 1171 m a.s.l. Annual temperature ranges from an average minimum of 23ºC to a mean maximum of 32ºC while mean monthly relative humidity ranges between 61 and 81%. The study was conducted during two consecutive cropping seasons of year 2011 rainfall periods.
Agronomic practices used in the study: Three Basil varieties: Ocimum basilicum, Ocimum gratissimum and the local basil collected from R.L.D.B.S.C. & F.F.D.C., Spices Programme nationwide germplasm survey were used. The soil used was sandy loam in texture. The experimental site had been left to fallow before the cropping seasons. The Soil used in the report was ploughed and harrowed. Basal dressing of 60 kg/ha of nitrogen, phosphorus and potassium were each applied as NPK 15:15:15. These were applied 2 Weeks after Planting (WAP) by incorporation into the soil using hand hoe. Seeds were raised in the nursery and later transplanted at 3WAP to spacing of 0.50×0.50 m at one plant per stand.Net plot size was 5 m2. The experimental design was Randomized Complete Block design with 5 replications. Weeds were hand-hoed at 2, 5 and 8 WAP. Cypermethrin at 50 g.a.i. per ha was sprayed against insects, starting from 3 WAP and at fortnightly interval until 9 WAP.
Procedure for the genetic and disease symptom measurements: Basil data observations were taken at 3weeks intervals for purplish anthocyanin pigmentation on plant parts (stem, petiole, leaf and leaf vein), pathogenicchlorotic spots incidence, tolerance and leaf deformation severity. Data observation started from 3 Weeks after
Planting (WAP) to 15 WAP. At each observation time, five plants were randomly sampled per plot from two rows bordering reference centre plant. A final sample was taken at physiological maturity (15 WAP). Veinal Mottle Mosaic Disease (VMMD) symptom incidence was determined as chlorotic lesion spot more than 0.25 mm on leaf surface. VMMD tolerance was determined as chlorotic spots covering less than 0.25% leaf surface area; VMMD severity was determined as chlorotic spots covering more than 0.25% leaf surface area with leaf deformation.
These symptoms were rated on a symptom scale ranging from 0 to 5, where, 0 = nil, 1 = very low, 2 = low, 3 = medium, 4 = high, and 5 = very high pathological chlorotic spot disease infection symptom. These score ratings per observation were added up divided by number of observation and then divided by number of replications sampled.
RESULTS AND DISCUSSION: There were significant phenotypic and viral disease symptom differences among the four varieties that were evaluated. These differences were observed in plant coloration ranging from deep to light purple coloration of stem, leaf, leaf vein and petiole, as shown in Table 1.
Analysis of plant diversity is very useful for germplasm curator as it helps to define the variation structure, thus enabling the assessment of genetic erosion, potential exploration and site conservation priorities and promoting efficient germplasm collection, multiplication and preservation. Moreover, these studies aid plant breeders in its utilization. In this sense the local Basil specie is a potential source of novel genes for Basil breeding as it shows resistance to disease and plant quality traits. Basil variety ODV1/10 in particular was observed to be significantly deep purple compared to light purple ODV2/10 while ODV3, O. gratissicum and the local varieties were green pigmented throughout.
Our results support the hypothesis that the central self-incompatible populations would be the oldest living biotypes from which the others were derived. As the species migrated northward and southward, self-incompatibility was replaced by self-compatibility possibly as a result of selection favored by the sparse populations and because of fewer and weedier genotypes. This pattern of variation resembles the emancipation of the recessives phenomenon when populations migrate far from their centre of diversity.
We asserted that as populations move away from the region of origin, the genetic diversity is diminished and the frequency of homozygotes rises.
Chang 10 reported that solar irradiation affected basil growth and quality which might justify our findings of assessing variability due to plant pigmentation. The high variability that we found in this study could be due to different factors. This tropical area is part of the hypothetical tropical region conducive to ancestors of this species, which would explain the greater diversity. Also, the location of this area in the middle oftropical geo-climate and habitats could permit the incorporation of diversity and limiting the genetic flow between the North and East.
Viral disease incidence was significantly lowest at 50% anthesis for ODV1/10 followed by the local variety. Incidence was significantly highest for the variety ODV3/10 (Table 2). Basil tolerance to Venial Mottle Mosaic Disease (VMMD) was found to be significant in the order:
Local = ODV1/10>ODV2/10 = ODV3/10 = O. gratissicum (Table 2). Basil VMMD severity was found to be significant in the order: O. gratissicum = ODV3/10> ODV2/10>ODV1/10>Local (Table 2).
TABLE1: COLOR VARIATIONS OF BASIL
Plant part | ODV1/10 | ODV2/10 | ODV3/10 | O. gratisimum | Local |
Leaf | Purple | light purple | Green | Green | Green |
Stem | Purple | light purple | Green | Green | Green |
Petiole | Purple | light purple | Green | Green | Green |
Vein | Purple | light purple | Green | Green | Green |
*: ODSV1/10: Ojo David Solanum variety1collected 2010; ODSV2/10: Ojo David Solanum variety 2 collected 2010; Local: Indigenous land race local variety
TABLE 2: BASIL TOLERANCE TO VEINAL MOTTLE MOSAIC DISEASE AT 50% ANTHESIS
Symptom+ | ODV1/10 | ODV2/10 | ODV3/10 | O. gratisimum | Local | LSD (5%) |
Incidence | 2.0 | 3.0 | 5.2 | 3.0 | 2.2 | 0.18 |
Tolerance | 8.1 | 6.8 | 6.2 | 5.4 | 8.8 | 1.20 |
Severity | 5.0 | 6.6 | 8.0 | 8.0 | 4.0 | 0.33 |
*: ODSV1/10: Ojo David Solanum variety1collected 2010; ODSV2/10: Ojo David Solanum variety 2 collected 2010; Local: Indigenous land race. [local variety; +: Incidence: Mean number of plant(s) infected across replications; Tolerance: Index of disease symptom appearance before economicthreshold; Severity: Index of disease symptom damage after economic threshold]
Our findings revealed for the first time significant tolerance to Venial Mottle Mosaic Virus (VMMV) in the Purple colored compared to the green varieties of O. basilicum in the early stages of growth till 50% anthesis. This is the first observation and reporting in the continent. Similar pathological cases reported 2009 in other continent 11, 12 indicated the authenticity of the current situation in Africa. Tolerance to VMMV symptoms increased significantly with purplish coloration.
CONCLUSION: We concluded that inducement of purplish coloration in Basil through breeding with sustainable pathological interventions might improve tolerance to VMMV and thereby increase market value of Basil.
ACKNOWLEDGMENT: The lead author of this report wishes to thank the honorable secretary of Dr. Nagendra Swarup, Dr. Bhakti Shukla (F.F.D.C) and Principal D.B.S. College Kanpur for conducive research environment and financial assistance to carry out this investigation. Special regards as well to Dr. R.K. Khare (H.O.D), Dr. Ashok Mishra, Dr. Sunil Prasad, Dr C.P. Singh for taking time out of his busy schedules, during his sabbatical period to edit this manuscript.
REFERENCES:
- Kéita, S.M., C. Vincent, J. P. Schmit, A. Bélanger, S.M. Kéita, C. Vincent, J. P. Schmit and A. Bélanger,2000. Essential oil composition of (Ocimum basilicum L., O. gratissimum L. and O. suave L.) inthe Republic of Guinea. Flavour Fragrance J., 15(5):339-341.
- Kasali, A.A., A.O. Eshilokun, S. Adeola, P. Winterhalter,H. Knapp, B. Bonnlander, W.A. Koenig, A.A. Kasali, A.O. Eshilokun, S. Adeola, P. Winterhalter, H. Knapp, B. Bonnlander and W.A. Koenig, 2005. Volatile oil composition of new chemotype of (Ocimum basilicum L.) from Nigeria. Flavour Fragrance J., 20(1): 45-47.
- Masi, L., D. Siviero, P.C. Esposito, D. Castaldo, F. Siano, B. Laratta, L. Masi, P.D. Siviero, C. Esposito,D. Castaldo, F. Siano and B. Laratta. Assessment of agronomic, chemical and genetic variability in common basil (Ocimum basilicum L.)genotypes, belonging to nine known cultivars grown in Italy. Euro. Food Res. Technol., 2006; 223(2):273-281.
- Siddiqui, B.S., S.T. BegumAli, B.S. Siddiqui and S.T. Ali. New cinnamic acid esters from Ocimum basilicum. Nat. Prod. Res., 2007; 21(8): 736-741
- Samir, D.C., M.B. Sukalyan, B.D. Chakraborty and S.M. Abhijit. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum. Bioresour. Technol., 2007;98(15): 2949-2952.
- Klimánková, E. Holadová, K. Hajšlová, T. Jajka, J. Poustka and M. Koudela. Aroma profiles of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem., 2008; 107(1): 464-472.
- Kéita, S.M., C. Vincent, J.P. Schmit, J.T. Arnason, A. Bélanger, S.M. Kéita, C. Vincent, J.P. Schmit, J.T. Arnason and A. Bélanger. Efficacy of essential oil of Ocimum basilicum L. and O.gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculates (Fab.) [Coleoptera: Bruchidae]. J. Stored Prod. Res., 2001; 37(4): 339-349.
- Razavi, S.M.A.S., A. Mortazavi, L. Matia-Merino, S.H. Hosseini-Parvar, A. Motamedzadegan, E. Khanipour, S.M.A. Razavi, S.A. Mortazavi, L. Matia-Merino, S.H. Hosseini-Parvar, A. Motamedzadegan and E. Khanipour.Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L). Inter. J. Food Sci.Technol., 2009; 44(9): 1755-1762.
- Phippen, W.B., J.E. Simon, W.B. Phippen and J.E. Simon. Anthocyanin inheritance and instability in purple basil (Ocimum basilicum L). J. Heredity, 2000; 91(4): 289-296.
- Chang, X.M., P.G. Alderson and C.J.Wright. Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils. Environ. Experimental Bot., 2008; 63(1-3): 216-223.
- Davino, S., G. P. Accotto, V. Masenga, L. Torta, M. Davino,S. Davino, G.P. Accotto, V. Masenga, L.Torta and M. Davino. Basil (Ocimum basilicum), a new host of Pepino mosaic virus. Plant Pathology, 2009.; 58(2): 407.
- Ronco, L., C. Rollán, Y.J. Choi, H.D. Shin, L. Ronco, C. Rollán, Y.J. Choi and H.D. Shin. Downy mildew of sweet basil (Ocimum basilicum) caused by Peronospora sp. in Argentina. Plant Pathol., 2009; 58(2):395.
- Momen, F.M., S.A.A. Amer, F.M. Momen and S.A.A. Amer. Influence of the sweet basil, (Ocimum basilicum L.) on some predacious mites of family Phytoseiidae (Acari: Phytoseiidae). Act. Phytopathol. Entomol. Hungarica, 2003; 38(1-2): 137-143.
How to cite this article:
Srivastava HC, Shukla P, Maurya AS and Tripathi S: Assessment and Quality basil (Ocimum basilicum) genetic variability and viral disease in Lakhimpur, Uttar Pradesh, India. Int J Pharm Sci Res 2013; 4(5); 1897-1990.
Article Information
34
1897-1900
289KB
1120
English
IJPSR
H.C. Srivastava, Pankaj Shukla, Ajay Singh Maurya and Sonia Tripathi*
Research lab, D.B.S. College (R.L.D.B.S.C.) Kanpur-208006, Uttar Pradesh, India
sonia.tripathi2009@gmail.com
04 January, 2013
23 February, 2013
25 April, 2013
http://dx.doi.org/10.13040/IJPSR.0975-8232.4(5).1897-00
01 May, 2013