#### ECCENTRICITY ATOM-BOND CONNECTIVITY INDEX OF POLYCYCLIC AROMATIC HYDROCARBON PAHk

**HTML Full Text**

**ECCENTRICITY ATOM-BOND CONNECTIVITY INDEX OF POLYCYCLIC AROMATIC HYDROCARBON PAH _{k}**

M. R. Rajesh Kanna ^{1}, R. Pradeep Kumar ^{2} Muhammad Kamran Jamil ^{3 }and Mohammad Reza Farahani *^{4}

Department of Mathematics ^{1}, Maharani's Science College for Women, Mysore, Karnataka, India.

Department of Mathematics ^{2}, The National Institute of Engineering, Mysuru, Karnataka, India.

Department of Mathematics ^{3}, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore, Pakistan.

Department of Applied Mathematics ^{4}, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.

**ABSTRACT:** Let *G=(V,E)* be molecular graph with vertex set V (G) and edge set E(G) in which the set of vertices and the set of edges of the graph correspond to the atoms of the molecule and chemical bonds, respectively. We denote *d(u,v)* the distance between u and v i.e the length of the shortest path connecting u and v. The eccentricity of a vertex in *V(G)* is defined to be Recently, we proposed the fifth atom-bond connectivity index of a simple connected graph G as . In this paper, we present more study of the fifth atom-bond connectivity index and compute this new index of polycyclic aromatic hydrocarbons.

Keywords: |

Topological index, Molecular graphs, Chemical structures Polycyclic Aromatic Hydrocarbon (PAH_{k}), Circumcoronene series of Benzenoid

**INTRODUCTION: **Mathematical chemistry focuses on mathematically new ideas and concepts developed or adapted for chemistry. Mathematics may be from any of many diverse mathematical areas. The combination of graph theory and chemistry is called *chemical graph theory*. Graph theory is used to mathematically model molecules in order to gain insight into the physical properties of these chemical compounds. Some physical properties, such as the boiling point, are related to the geometric structure of the compound.

Polycyclic Aromatic Hydrocarbons *(PAH _{k})* are organic compounds containing only carbon and hydrogen that are composed of multiple aromatic rings.

*PAH*are neutral, nopolar molecules, they are found in fossil fuels, in tar deposits and are produced when insufficient oxygen or other factors result in incomplete combustion of organic matter. Let

_{k}*G(V,E)*be a graph, where

*V*and

*E*represent the set of vertices and the set of edges of graph

*G*. For vertices

*u, v ,*the distance between

*u*and

*v*is the length of the shortest path connecting them and denoted as

*d(u,v).*

The eccentricity of the vertex *v, ,* is the maximum distance between *v* and any other vertex of the graph. The maximum and minimum eccentricity in the graph is called its diameter and radius, respectively. The degree of the vertex *v*, *d(v), *is the number of adjacent vertices to *v*. We used the standard notation from chemical graph theory for further details see ^{1, 2}.

In the field of chemical graph theory, a topological index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are used in the development of quantitative structure activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure.

One of the well-known topological indexes is atom bond connectivity (ABC) index, proposed by Estrada ^{3}. The *ABC *index of a graph *G* is defined as:

In 2010, Graovac et al. defined a new version of the atom bond connectivity index ^{4}, it is defined as

where *n _{u} *is the number of vertices of graph

*G*whose distance to the vertex

*u*is smaller than the distance to the vertex

*v*.

Farahani introduced the third version of atom bond connectivity index ^{5} and defined as

where *m _{u} *is the number of edges of graph

*G*whose distance to the vertex

*u*is smaller than the distance to the vertex

*v*.

In 2010, Ghorbani ^{6} defined the fourth version of atom-connectivity index and defined it as

where *S _{u}* is the sum of degrees of all neighbor of vertex

*u*in graph

*G*.

Recently, Farahani ^{7} proposed the eccentric version of atom-bond connectivity index as:

A lot of research have been done on this family of topological indices, for further history and results we refer ^{8-22}. In this paper, we computed the fifth version of atom-bond connectivity index of Polycyclic Aromatic Hydrocarbons *(PAH _{k}).*

**Main Result:** Polycyclic Aromatic Hydrocarbons (*PAH _{k}*) are a group of more than 100 chemicals. First three member of this group are called Benzene, Coronene and Circumcoronene and shown in

**Fig. 1**.

**FIG. 1: ****FIRST THREE MEMBERS OF POLYCYCLIC AROMATIC HYDROCARBONS** **(PAH _{k}).**

The 2-dimensional lattice of *PAH _{k} *has shown in

**Fig. 2**. It contains

*6k*vertices and

^{2}+6k*9k*edges. There are many research papers on polycyclic aromatic

^{2}+3k^{23-57}.

**FIG.2: ****A 2-DIMENSIONAL LATTICE OF POLYCYCLIC AROMATIC HYDROCARBONS** **(PAH _{k}).**

**Theorem: **The fifth atom-bond connectivity index of Polycyclic Aromatic Hydrocarbons* (PAH _{k})* is equal to:

**Proof: **To obtain our result, we use the Ring cut method ^{49.}

In **Fig. 3**, we apply the ring cuts to the Circumcoroneneseries of Benzenoid.

Clearly, the vertex set is , where Z_{i }= {1,2,…,i}. Also, the edge set is *E(H _{k})={ γ^{i}_{z,j}β^{i}_{z,j}*,

*γ*

^{i}_{z,j+1}β^{i}_{z,j}_{,}

*γ*and

^{i-1}_{z,j}β^{i}_{z,j}*γ*

^{i}_{z,j}γ^{i}_{z,j+1}|i*Î*

*ℤ*

_{k}*& j*

*Î*

*ℤ*

_{i }*& z*

*Î*

*ℤ*

_{6}*}.*

**FIG. 3: ****RING CUT METHOD REPRESENTATION OF POLYCYCLIC AROMATIC HYDROCARBONS** **(PAH _{k}).**

To obtain the final result we partitions the vertex set and edge set the help of ring cut for illustration see **Fig. 2** ^{58}, we have

- For all vertices
*α*of_{z,j}*PAH*_{k}

*=4k+1*

- For all vertices of
*PAH*_{k}*(**"**i=1,..,k; z**Î**ℤ*_{6,}*j**Î**ℤ*_{i-1}

* =2k+2i-1*

- For all vertices of
*PAH*_{k}*(**"**i=1,..,k; z**Î**ℤ*_{6,}*j**Î**ℤ*_{i}*)*

*=2(k+i)*

From above calculation we have the following:

**REFERENCES****:**

- West, Introduction to graph theory. Prentice Hall of India, 2003.
- A. Bondy, U. S. R. Murty, graph theory, springer.
- Estrada, L. Torres, L. Rodríguez, I. Gutman, Indian J. Chem., 1998; 37, 849.
- Graovac, M. Ghorbani, A new version of atom–bond connectivity index, Acta Chim. Slov. 2010; 57: 609–612.
- R. Farahani. Computing a New Version of Atom-Bond Connectivity Index of Circumcoronene Series of Benzenoid Hk by Using Cut Method, Journal of Mathematical Nanoscience. 2012; 2(1): 15-20.
- Ghorbani, M.A. Hosseinzadeh. Computing ABC4 index of nanostar dendrimers, Optoelectron. Adv. Mater. – Rapid Commun. 2010; 4(9): 1419 – 1422.
- R. Farahani, Eccentricity version of atom-bond connectivity index of Benzenoid family ABC5(Hk), World Applied Sciences Journal 2013; 21 (9): 1260-1265.
- R. Ashrafi, M. Ghorbani, M. Hemmasi. Digest. J. Nanomater. Bios. 2009; 4(3): 483-486.
- Alikhani and M.A. Iranmanesh. Eccentric connectivity polynomial of an infinite family of Dendrimer. Digest. J. Nanomater. Bios. 2011; 6(1): 253-257.
- Gutman, O.E. Polansky. Mathematical Concepts in Organic Chemistry, Springer-Verlag, New York, 1986.
- A. Johnson, G.M. Maggiora. Concepts and Applications of Molecular Similarity, Wiley Interscience, New York, 1990.
- R. Farahani, Computing fourth atom-bond connectivity index of V-Phenylenic Nanotubes and Nanotori. Acta Chimica Slovenica. 2013; 60(2): 429–432.

- R. Farahani, Connective Eccentric Index of Linear Parallelogram P(n,m). Int. Letters of Chemistry, Physics and Astronomy 2014; 1857-62.
- B. Liu, C. Wang, S. Wang, B. Wei, Zagreb Indices and Multiplicative Zagreb Indices of Eulerian graphs (submitted).
- Wang, B. Wei, Padmakar - Ivan indices of k-trees, (submitted).
- Wang, M.R. Farahani, M.R. Rajesh Kanna, R. Pradeep Kumar, Schultz polynomials and their topological indices of Jahangir graphs J2, m, Applied Mathematics, accepted 2016.
- Wang, B. Wei, Multiplicative Zagreb indices of Cacti, Discrete Mathematics, Algorithms and Applications 2016; 1650040.
- Wang, M.R. Farahani, M. R. Rajesh Kanna, M.K. Jamil, R. Pradeep Kumar, The Wiener Index and the Hosoya Polynomial of the Jahangir Graphs, Applied and Computational Mathematics 2016; 5: 138-141.
- R. Farahani, M.R. Rajesh Kanna, R. Pradeep Kumar, S. Wang, The vertex Szeged index of Titania Carbon Nanotubes TiO
_{2}(m,n), Int. J. Pharm. Sci. Res. 2016; 7(9): 1000-08. - Wang, S. Wang, B. Wei, Cacti with Extremal PI Index, Transactions on Combinatorics 2016; 5: 1-8.
- Wang, B. Wei, Multiplicative Zagreb indices of k-trees, Discrete Appl. Math. 2015; 180: 168-175.
- Woodard, S. M. Snedeker, Polycyclic Aromatic Hydrocarbons and breast cancer risk, Cornell University Program on Breast Cancer and Environmental Risk Factors in New York State (BCERF), Fact sheet No. 41, July 2001.

- E. Wiersum, L. W. Jenneskens. (Ed.: Y. Valle. e), Gordon and Breach Science Publishers, Amsterdam, The Netherlands, 1997; 143–194.
- Berresheim, M. Müller, K. Müllen, Chem. Rev. 1999; 99: 1747–1785.
- W. Bauschlicher, Jr, E. L.O. Bakes, Chem. Phys. 2000; 262: 285-291.
- M. Craats, J.M. Warman, K. Müllen, Y. Geerts, J. D. Brand, Adv. Mater. 1998; 10: 36-38.
- Wagner, K. Müllen, Carbon. 1998; 36: 833- 837.
- Dtz, J. D. Brand, S. Ito, L. Ghergel, K. Müllen, J. Am. Chem. Soc. 2000; 122: 7707-7717.
- Yoshimura, L. Przybilla, S. Ito, J. D. Brand, M. Wehmeir, H. J. Rder, K. Müllen, Macromol. Chem. Phys. 2001; 202: 215-222.
- E. Stein, R. L. Brown, J. Am. Chem. Soc. 1987; 109: 3721-3729
- Dietz, N. Tyutyulkov, G. Madjarova, K. Müllen, J. Phys. Chem. B 2000; 104: 1746-1761.
- E. Huber, A. Mauracher and M. Probst. Chem. Eur. J. 2003; 9: 2974-2981.
- Jug, T. Bredow, Models for the treatment of crystalline solids and surfaces, Journal of Computational Chemistry, 2004; 25: 1551-1567.
- Guerrini, J.V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes. Sensing Polycyclic Aromatic Hydrocarbons with Dithiocarbamate-Functionalized Ag Nanoparticles by Surface-Enhanced Raman Scattering. Anal. Chem. 2009; 81: 953–960.
- H. Pacheco-Sanchez andG. Ali Mansoori. Tricritical phenomena in asphaltene/aromatic hydrocarbon systems. Revista Mexicana de Fısica 2013; 59: 584–593.
- K. Jamil, M.R. Farahani, M.R.R. Kanna: Fourth geometric-arithmetic index of Polycyclic Aromatic Hydrocarbons (PAHk). The Pharmaceutical and Chemical Journal 2016; 3(1): 94-99.
- R. Farahani, H.M. Rehman, M.K. Jamil, D. W. Lee: Vertex version of PI index of polycyclic aromatic hydrocarbons. The Pharmaceutical and Chemical Journal, 2016; 3(1): 138-141.
- R. Farahani: Zagreb indices and Zagreb polynomials of polycyclic aromatic hydrocarbons, J. Chem. Acta, 2016; 2: 70-72.
- R. Farahani. Hosoya, Schultz, Modified Schultz Polynomials and Their Topological Indices of Benzene Molecules: First Members of Polycyclic Aromatic Hydrocarbons (PAHs), International Journal of Theoretical Chemistry. 2013; 1: 09-16.
- R. Farahani: Schultz and Modified Schultz Polynomials of Coronene Polycyclic Aromatic Hydrocarbons. Int. Letters of Chemistry, Physics and Astronomy. 2014; 13: 1-10.
- Gao and M.R. Farahani: Degree-based indices computation for special chemical molecular structures using edge dividing method, Applied Mathematics and Nonlinear Sciences. 2015; 1(1): 94-117.
- R. Farahani: Exact Formulas for the First Zagreb Eccentricity Index of Polycyclic Aromatic Hydrocarbons (PAHs). Journal of Applied Physical Science International. 2015; 4: 185-190.
- R. Farahani: The Second Zagreb Eccentricity Index of Polycyclic Aromatic Hydrocarbons PAHk. Journal of Computational Methods in Molecular Design. 2015; 5(2): 115-120.
- R. Farahani, W. Gao and M.R. Rajesh Kanna: On the Omega Polynomial of a Family of Hydrocarbon Molecules Polycyclic Aromatic Hydrocarbons PAHk. Asian Academic Research Journal of Multidisciplinary. 2015; 2(7): 263-268.
- R. Farahani, W. Gao: On Multiple Zagreb indices of Polycyclic Aromatic Hydrocarbons PAH. Journal of Chemical and Pharmaceutical Research. 2015; 7(10): 535-539.
- R. Farahani, W. Gao: Theta polynomial (G,x) and Theta index (G) of Polycyclic Aromatic Hydrocarbons PAHk. Journal of Advances in Chemistry. 2015; 12(1): 3934-3939.
- R. Farahani and M.R. Rajesh Kanna. The Pi polynomial and the Pi Index of a family Hydrocarbons Molecules. Journal of Chemical and Pharmaceutical Research. 2015; 7(11): 253-257.
- R. Farahani, W. Gao and M.R. Rajesh Kanna. The Edge-Szeged index of the Polycyclic Aromatic Hydrocarbons PAHk. Asian Academic Research Journal of Multidisciplinary 2015; 2(7): 136-142.
- R. Farahani and M.R. Rajesh Kanna. (2015), The Edge-PI index of the Polycyclic Aromatic Hydrocarbons PAHk. Indian Journal of Fundamental and Applied Life Sciences. 5(S4), 614-617.
- K. Jamil, H.M. Rehman, M.R. Farahani and D.W. Lee. Vertex PI Index of Polycyclic Aromatic Hydrocarbons PAHk. The Pharmaceutical and Chemical Journal. 2016; 3(1): 138-141.
- R. Farahani, M.K. Jamil and M.R. Rajesh Kanna. Fourth Geometric Arithmetic Index of Polycyclic Aromatic Hydrocarbons (PAHk). The Pharmaceutical and Chemical Journal. 2016; 3(1): 1-6.
- R. Farahani, M.K. Jamil, M.R. R. Kanna, R. P. Kumar, Computation on the fourth Zagreb index of polycyclic aromatic hydrocarbons (PAHk), Journal of Chemical and Pharmaceutical Research, 2016; 8(4): 41-45.
- K. Jamil, M.R. Farahani, M.R.R. Kanna, R.P. Kumar, The second Zagreb eccentricity index of polycyclic aromatic hydrocarbons (PAHk), Journal of Chemical and Pharmaceutical Research, 2016; 8(4): 80-83.
- W. Lee, M.K. Jamil, M.R. Farahani and H.M. Rehman. The Ediz Eccentric connectivity index of Polycyclic Aromatic Hydrocarbons PAHk. Scholars Journal of Engineering and Technology, 2016; 4(3): 148-152.
- Yan, Y. Li, M.R. Farahani, M. Imran and M.R. Rajesh Kanna. Computing the Szeged, Revised Szeged and Normalized Revised Szeged Indices of the Polycyclic Aromatic Hydrocarbons PAHk. Journal of Computational and Theoretical Nanoscience. In press. 2016
- Jamil, M.R. Farahani, M. Ali Malik, M. Imran. Computing the Eccentric Version of Second Zagreb Index of Polycyclic Aromatic Hydrocarbons (PAHk) Applied Mathematics and Nonlinear Sciences 2016; 1(1): 247-251.
- Wang, M.R. Farahani, A.Q. Baig, W. Sajja, The sadhana polynomial and the sadhana index of polycyclic aromatic hydrocarbons PAHk, J. Chem. Pharm. Res. 2016; 8(6): 526-531.
- R. Farahani, Computing eccentricity connectivity polynomial of Circumcoronene series of Benzenoid Hk by Ring-cut Method. Annals of West University of Timisoara-Mathematics and Computer Science. 2016; 51(2): 29–37.

**How to cite this article:**Kanna MRR, Kumar RP, Jamil MK and Farahani MR: Eccentricity atom-bond connectivity index of polycyclic aromatic hydrocarbon PAH

_{k}. Int J Pharm Sci Res 2017; 8(1): 201-06.doi: 10.13040/IJPSR.0975-8232.8(1).201-06.

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

# Article Information

24

201-206

732

1095

English

IJPSR

M. R. Rajesh Kanna, R. P. Kumar, Md. Kamran Jamil and Md. Reza Farahani *

Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran

mrfarahani88@gmail.com

05 July, 2016

17 August, 2016

02 September, 2016

10.13040/IJPSR.0975-8232.8(1).201-06

01 January, 2017